UNIVERSIDAD PRIVADA DE TACNA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

"ANÁLISIS DE INSTRUMENTACIÓN SÍSMICA Y PROPUESTA DE MEJORA PREVENTIVA COMPARADO CON LOS PAÍSES DEL CINTURÓN DE FUEGO DEL PACÍFICO, TACNA-2021"

PARA OPTAR: TÍTULO PROFESIONAL DE INGENIERO CIVIL

PRESENTADO POR:

Bach: JOSÉ JEANS POL VARGAS VARGAS

TACNA – PERÚ 2021

UNIVERSIDAD PRIVADA DE TACNA FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS

"ANÁLISIS DE INSTRUMENTACIÓN SÍSMICA Y PROPUESTA DE MEJORA PREVENTIVA COMPARADO CON LOS PAÍSES DEL CINTURÓN DE FUEGO DEL PACÍFICO, TACNA-2021"

Tesis sustentada y aprobada el 30 de octubre del 2021; estando jurado calificador integrado por:

PRESIDENTE:	Mtra. Dina Marlene Cotrado Flores
SECRETARIO:	Mtro. Giancarlos Javier Machaca Frias
VOCAL:	Mtro. Wilber Percy Mendoza Ramirez
ASESOR:	Mtro. Edgar Hipólito Chaparro Quispe

DECLARACIÓN JURADA DE ORIGINALIDAD

Yo José Jeans Pol Vargas Vargas en calidad de bachiller de la escuela profesional de ingeniería civil de la facultad de Ingeniería de la universidad privada de Tacna, identificado con DNI 71273761.

Declaro bajo juramento que:

- 1. Soy autor de la tesis titulada:
 - "Análisis de la instrumentación sísmica y propuesta de mejora preventiva comparado con los países del cinturón de fuego del pacifico, Tacna-2021".
 - La misma que presento para optar:
 - El título profesional de ingeniero civil
- 2. La tesis no ha sido plagiada ni total ni parcialmente, para la cual se han respetado las normas internacionales de citas y referencias para las fuentes consultadas.
- 3. La tesis presentada no atenta contra derechos de terceros.
- 4. La tesis no ha sido publicada ni presentada anteriormente para obtener algún grado académico previo o título profesional.
- 5. Los datos presentados en los resultados son reales, no han sido falsificados, ni duplicados, ni copiados.

Por lo expuesto, mediante la presente asumo frente a la universidad cualquier responsabilidad que pudiera derivarse por la autoría, originalidad y veracidad del contenido de la tesis, así como por los derechos sobre la obra y/o invención presentada. En consecuencia, me hago responsable frente a la universidad y a terceros, de cualquier daño que pudiera ocasionar, por el incumplimiento de lo declarado o que pudiera encontrar como causa del trabajo presentado, asumiendo todas las cargas pecuniarias que pudieran derivarse de ello en favor de terceros con motivo de acciones, reclamaciones o conflictos derivados del incumplimiento de lo declarado o las que encontrasen causa en el contenido de la tesis, libro y/o invento.

De identificarse fraude, piratería, plagio, falsificación o que el trabajo de investigación haya sido publicado anteriormente; asumo las consecuencias y sanciones que de mi acción se deriven, sometiéndome a la normatividad vigente de la universidad privada de Tacna.

Tacna, 30 de octubre 2021

Alle Pel

JOSÉ JEANS POL VARGAS VARGAS DNI: 71273761

DEDICATORIA

A Dios por darme la vida y la oportunidad de cumplir de mis metas.

A mis padres por toda la ayuda posible desde pequeño, por sus enseñanzas.

A mi familia por su apoyo que se ve a lo largo de toda la vida.

A mi gran amigo hermano Lucas por la gran compañía y sabiduría que transmite el a través del tiempo.

AGRADECIMIENTO

A dios por darme todo este tiempo la salud y el conocimiento necesario para desarrollar este trabajo.

A la Universidad Privada de Tacna, por brindarme la oportunidad de ser su estudiante y realizar mi carrera universitaria.

A todos los docentes de la escuela de Ingeniería Civil de la Universidad Privada de Tacna, porque cada uno ha dejado un conocimiento en mí que me servirá durante mi trabajo profesional.

A mi asesor el Ingeniero Edgar Chaparro, por su apoyo brindado en este periodo de realización de la tesis.

Al CISMID en especial al ingeniero Fernando Lazares por las reuniones que se dio durante el trabajo, por los conocimientos aportados a este tema.

ÍNDICE GENERAL

PÁGINA DE JURADOS	ii
DECLARACIÓN JURADA DE ORIGINALIDAD	iii
DEDICATORIA	v
AGRADECIMIENTO	vi
RESUMEN	xvii
ABSTRACT	xviii
INTRODUCCIÓN	1
CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA	3
1.1. Descripción Del Problema	3
1.2. Formulación Del Problema	4
1.2.1. Problema General	4
1.2.2. Problemas Específicos	4
1.3. Justificación e Importancia	4
1.4. Objetivos	5
1.4.1. Objetivo General	5
1.4.2. Objetivos Específicos	5
1.5. Hipótesis	5
1.5.1. Hipótesis General	5
1.5.2. Hipótesis Específica	6
CAPITULO II: MARCO TEÓRICO	7
2.1. Antecedentes	7
2.1.1. Nivel Internacional	7
2.1.2. Nivel Nacional	7
2.1.3. Nivel Local	8
2.2. Bases Teóricas	10
2.2.1. Cinturón De Fuego	10
2.2.2. Sismos	10

2.2.2.1.	Distancia Epicentral	. 13
2.2.3. Sis	micidad Global	. 13
2.2.4. Sis	micidad En El Perú	. 14
2.2.4.1.	Tectónica Del Perú	. 15
2.2.4.2.	Sismicidad Histórica	. 16
2.2.4.3.	Sismicidad Instrumental	. 17
2.2.5. Zo	nificación Sísmica En El Perú	. 19
2.2.6. On	das Sísmicas	. 21
2.2.6.1.	Ondas Primarias	. 21
2.2.6.2.	Ondas Secundarias	. 21
2.2.7. On	das Superficiales	. 22
2.2.7.1.	Ondas Love o Tipo L	. 22
2.2.7.2.	Ondas Rayleigh o Tipo R	. 23
2.2.8. Tip	oos De Sismo	. 24
2.2.8.1.	Interplaca	. 24
2.2.8.2.	Intraplaca	. 24
2.2.8.3.	De Origen Volcánico	. 25
2.2.8.4.	Producidos Por El Humano.	. 25
2.2.9. Sis	stemas De Detección y Monitoreo Convencional	. 26
2.2.9.1.	Sismógrafo	. 26
2.2.9.2.	Sensores	. 26
2.2.9.2.1.	Corto Periodo	. 27
2.2.9.2.2.	Banda Ancha	. 27
2.2.9.2.3.	Movimiento Fuerte	. 27
2.2.10.	El Sismógrafo	. 27
2.2.10.1.	El Sismógrafo Mecánico	. 29
2.2.10.2.	El Sismógrafo Electromagnético	. 30
2.2.10.3.	El sismógrafo De Banda Ancha	. 31
2.2.11.	Acelerógrafos	. 31

2.2.12.	Diferencia entre sismógrafo y acelerógrafo	32
2.2.13.	Escalas Sísmicas	32
2.2.13.1.	Escala De Richter	33
2.2.13.2.	Escala De Mercalli	34
2.2.14.	Riesgo Sísmico	35
2.2.15.	Peligrosidad Sísmica	36
2.2.16.	Vulnerabilidad Sísmica	36
2.2.17.	Vulnerabilidad Del Sistema	36
2.2.17.1.	Vulnerabilidad Institucional	37
2.2.17.2.	Vulnerabilidad Social	37
2.2.17.3.	Vulnerabilidad Física	38
2.3. Defi	nición De Términos	38
2.3.1. In	strumentación Sísmica	38
2.3.2. Si	stema De Alerta Temprana	38
2.3.3. Pr	evención	38
2.3.4. Vu	ılnerabilidad	39
2.3.5. PI	acas Tectónicas	39
2.3.6. O	ndas	39
2.3.7. Ad	celeración sísmica	39
2.3.8. Hi	pocentro	39
2.3.9. G	eofísica	40
2.3.10.	Límite de placa	40
2.3.11.	Epicentro	40
2.3.12.	Sismología	40
2.3.13.	Estación sismológica	40
2.3.14.	Manto	40
2.3.15.	Núcleo	41
CAPITULO) III: MARCO METODOLÓGICO	42
3.1. Tipo	y Diseño De La Investigación	42

3.1.1. Ti	po De Investigación	42
3.1.2. Di	seño De La Investigación	42
3.2. Pob	lación y Muestra De Estudios	42
3.2.1. Po	oblación	42
3.2.2. M	uestra	42
3.3. Ope	racionalización De Variables	42
3.3.1. Va	ariable Independiente	42
3.3.2. Va	ariable Dependiente	42
3.4. Téci	nicas e Instrumentos	43
3.4.1. Te	écnicas	43
3.4.2. In	strumentos	43
3.5. Prod	cesamiento y Análisis De Datos	44
CAPITULO) IV: RESULTADOS	45
4.1. Red	de acelerógrafos del Perú.	45
4.1.1. R	ed de acelerógrafos del Instituto Geofísico del Perú (IGP)	46
4.1.2. R	ed de acelerógrafos del CISMID	47
4.1.3. R	ed de acelerógrafos del Colegio de Ingenieros CIP	48
4.1.4. R	ed de acelerógrafos de SENCICO	49
4.1.5. Ed	dificios instrumentados	50
4.1.5.1.	Norma E.030-1970	50
4.1.5.2.	Norma E.030-1977	51
4.1.5.3.	Norma E.030-1997	51
4.1.5.4.	Norma E.030-2003	52
4.1.5.5.	Norma E.030-2006	53
4.1.5.6.	Norma E.030-2016	53
4.1.5.7.	Norma E.030-2018	54
4.1.6. Si	stema de Alerta Temprana de Perú	55
4.1.6.1.	Estaciones del SASPE	56
4.2. Serv	ricio Sismológico Nacional de México	.57

4.2.1.	Red de Banda Ancha	. 60
4.2.2.	Red Del Valle De México	. 63
4.2.3.	Red sísmica del Tacaná	. 65
4.2.4.	Red de CTBTO	. 66
4.2.5.	Sistema de alerta temprana de México	. 69
4.2.5.1.	Criterios del SASMEX	.72
4.2.5.2.	Tiempo de Alerta	.72
4.2.5.3.	Sonido de la Alerta Sísmica	. 73
4.2.5.4.	Sobre la Transmisión de la Alerta Sísmica	. 73
4.3. C	entro Sismológico Nacional de Chile	. 74
4.3.1.	Red De GPS	. 75
4.3.2.	Red de Sismógrafos	. 77
4.3.3.	Red De Acelerógrafos	. 78
4.3.4.	Sistema Alerta Temprana de Chile	. 79
4.3.5.	Sistema de Alerta de Emergencias	. 80
4.4. In	stituto Geofísico de la Escuela Politécnica Nacional de Ecuador	. 80
4.4.1.	Red Nacional de Sismógrafos	. 81
4.4.2.	Red Nacional de Acelerógrafos	. 81
4.4.3.	Red Nacional de Geodesia	. 81
4.4.4.	Red de Repetidoras	. 81
4.4.5.	Redes de Transmisión	. 82
4.4.6.	Sistema Alerta Temprana de Ecuador	. 82
4.5. A	gencia Meteorológica de Japón	. 82
4.5.1.	NIED	. 83
4.5.1.1.	MOWLAS	. 83
4.5.2.	Sistema de Alerta Temprana de Japón	. 86
4.5.2.1.	Tipo Advertencia	. 87
4.5.2.2.	Tipo Pronóstico	. 88
4.6. C	omparación	. 90

4.7. Propi	uestas de Alternativas de Prevención	91
4.7.1. Re	d Sísmica Submarina Peruana	91
4.7.2. Dif	usión de la Alerta Temprana	91
4.7.2.1.	Mejoramiento de la Aplicación Sismos del IGP	92
4.7.2.2.	Vía Mensaje de Texto	96
4.7.2.3.	Vía Televisión o Radio	97
4.7.2.4.	Por vía Internet	97
CAPITULO	V: DISCUSIÓN	99
CONCLUSI	IONES	101
RECOMEN	IDACIONES	102
REFERENC	CIAS BIBLIOGRÁFICAS	103
ANEXOS		104

ÍNDICE DE FIGURAS

Figura 1. Mapa de la división de las placas tectónicas del mundo	2
Figura 2. Convergencia entre placas	2
Figura 3. Origen de un sismo	3
Figura 4. Zonas sísmicas del mundo14	1
Figura 5. Proceso de subducción	5
Figura 6. Distribución de actividad sísmica17	7
Figura 7. Actividad sísmica del Perú19	9
Figura 8. Zonificación sísmica del Perú)
Figura 9. Transmisión de ondas P2	1
Figura 10. Transmisión ondas secundarias	2
Figura 11. Transmisión de ondas Love	3
Figura 12. Propagación de ondas Rayleigh	3
Figura 13. Zona de sismos interplaca e intraplaca25	5
Figura 14. Zonas de sismos volcánicos	5
Figura 15. Sismógrafo de péndulo vertical y horizontal28	3
Figura 16. Gráfica del sismograma	9
Figura 17. Elementos sismógrafo mecánico)
Figura 18. Elementos de sismógrafo electromagnético30)
Figura 19. Elementos sismógrafo de banda ancha3	1
Figura 20. Ubicación de las primeras estaciones de México	3
Figura 21. Sismómetro de un observatorio de México60)
Figura 22. Acelerómetro de un observatorio de México6	1
Figura 23. Receptor GNSS del observatorio6	1
Figura 24. Digitalizador del observatorio62	2
Figura 25. Ubicación de las estaciones62	2
Figura 26. Estación de Irapuato63	3
Figura 27. Ubicación de las estaciones64	4
Figura 28. Estación de Atizapán65	5
Figura 29. Ubicación de estaciones	3
Figura 30. Estación de Chiapas66	3
Figura 31. Ubicación de la red68	3
Figura 32. Estación de Isla Socorro68	3
Figura 33. Elementos del SASMEX7	1
Figura 34. Servicio técnico al SASMEX7	1
Figura 35. Ejemplo del SASMEX72	2

Figura 36.	SASMEX con ciudades diferentes	. 73
Figura 37.	Red de GPS de Chile	. 76
Figura 38.	GPS de Isla Mocha	. 77
Figura 39.	GPS de Taltal del CSN	. 77
Figura 40.	Red de sismógrafos de Chile	. 78
Figura 41.	Red de acelerógrafos de Chile	. 79
Figura 42.	Instrumento sísmico submarino	. 85
Figura 43.	Red sísmica S-net	. 86
Figura 44.	Mensaje de Alerta	. 89
Figura 45.	Mensaje de alerta por celular	. 90
Figura 46.	Notificación de Sismos	. 93
Figura 47.	Datos del Sismo	. 94
Figura 48.	Datos del Sismo de Tacna	. 95
Figura 49.	Datos del Sismo de Tacna	. 96

ÍNDICE DE TABLAS

Tabla 1. Velocidades y riesgo de los tipos de ondas sísmicas	24
Tabla 2. Instrumentos de registros de actividad sísmica	26
Tabla 3. Escala de Richter	34
Tabla 4. Escala de Mercalli Resumida	35
Tabla 5. Operacionalización de variables	43
Tabla 6. Resumen de acelerógrafos del Perú	45
Tabla 7. Red de acelerógrafos por región del IGP	47
Tabla 8. Red de acelerógrafos por región del CISMID	48
Tabla 9. Red de Acelerógrafos por región del CIP	49
Tabla 10. Red de Acelerógrafos por región de Sencico	50
Tabla 11. Edificios Instrumentados del Perú	55
Tabla 12. Estaciones del SASPE por región del Perú	57
Tabla 13. Red sísmicas de México	57
Tabla 14. Sismos sucedidos en México	59
Tabla 15. Estaciones de la Red Tacaná	65
Tabla 16. Estaciones de la Red CTBTO	67
Tabla 17. Sistemas de México	70
Tabla 18. Redes del CSN	75
Tabla 19. Instrumentos sísmicos de Ecuador	80
Tabla 20. Redes de Japón	83
Tabla 21. Diferencia entre tipo alerta y advertencia	88
Tabla 22. Intensidad sísmica de Japón	89
Tabla 23. Propuesta de alternativas	98

ÍNDICE DE ANEXOS

Anexo 1. Matriz de consistencia	104
Anexo 2. Red de acelerógrafos del CISMID	107
Anexo 3. Red de Acelerógrafos del CIP	112
Anexo 4. Red del CISMID- UNI- CIP	114
Anexo 5. Red de Acelerógrafos de Sencico	118
Anexo 6. Edificios Instrumentados del Perú	119
Anexo 7. Estaciones del SASPE	121
Anexo 8. Estaciones de la red de Banda Ancha de México	129
Anexo 9. Estaciones de la red del Valle de México	131
Anexo 10. Red de GPS del CSN de Chile	132
Anexo 11. Red de sismógrafos del CSN de Chile	135
Anexo 12. Red de Acelerógrafos del CSN de Chile	138
Anexo 13. Red nacional de Sismógrafos de Ecuador	140
Anexo 14. Red nacional de acelerógrafos por RENAC de Ecuador	142
Anexo 15. Red local de acelerógrafos de Quito-Ecuador	143
Anexo 16. Red nacional de Geodesia de Ecuador	143
Anexo 17. Red submarina de Japón S-net	144
Anexo 18. Red submarina de Japón Do-net 1	147
Anexo 19. Red submarina de Japón Do-net 2	148
Anexo 20. Red submarina de Japón Bahía de Sagami	149

RESUMEN

La presente tesis llamada "Análisis de instrumentación sísmica y propuesta de mejora preventiva comparado con los países del cinturón de fuego del pacifico, tacna-2021", tiene como objetivo principal analizar la instrumentación sísmica para una propuesta de mejora preventiva comparada con los países del cinturón de fuego del pacifico. Se mostrará las redes de sísmicas del Perú, administradas por instituciones pertinentes, así también los instrumentos que son utilizados para la recolección y procesamiento de datos, igualmente se mostrara los instrumentos sísmicos que usan actualmente los países del cinturón de fuego del pacifico, países que también están en el mismo peligro sísmico por estar en la zona algunos sufren más que otros, razón por la cual se van equipando mucho más con el paso del tiempo y con el paso de la tecnología, para la presente investigación se realizó a través de los documentos disponibles de las páginas oficiales de las instituciones responsables de administrar las redes sísmicas además, se recaudó información adicional a las entes administradoras de redes de los diferentes países a investigar, así mismo se recolectó información a través de fuentes de investigación de instrumentación sísmica por profesionales a fines y hubo entrevistas con un especialista del CISMID para ampliar la información y validarla la misma. Además, las redes de los países de Japón, Ecuador, México y Chile para ver sus instrumentos sísmicos, también como ellos están previniendo los sismos con ayuda de instrumentos sísmicos, luego de eso comparar con nuestro país, para poder obtener una referencia de nuestro estado de la instrumentación sísmica. En Japón se encontró que tienen funcionando actualmente de su sistema de alerta temprana desde 2011 y una red submarina dándoles un potencial de información sísmica, en el caso de México se tiene estaciones con instrumentos sísmicos funcionando en una sola estación y funcionando su sistema de alerta temprana desde el año 1991, en el caso de Chile se ve una buena cantidad de instrumentos sísmicos parecidos a Perú, teniendo ellos un sistema de alerta de emergencias ya en funcionamiento y con Ecuador se ve una menor cantidad de instrumentos sísmicos frente a Perú.

Palabras claves: acelerógrafo, sismógrafo, sensor, ondas, cinturón de fuego, red, estación.

ABSTRACT

The present thesis called "Analysis of seismic instrumentation and proposal for preventive improvement compared with the pacific fire belt countries, tacna-2021", has as main objective to analyze the seismic instrumentation for a proposal of preventive improvement compared with the countries of the Pacific fire belt. It will show the seismic networks of Peru, administered by relevant institutions, as well as the instruments that are used for data collection and processing. It will also show the seismic instruments currently used by the countries of the Pacific Ring of Fire, countries that are also in the same seismic danger for being in the area, some suffer more than others, which is why they are becoming much more equipped with the passage of time and with the passage of technology, For the present investigation it was carried out through the available documents of the official pages of the institutions responsible for administering the seismic networks. In addition, additional information was collected from the entities that administer the networks of the different countries to investigate, likewise information was collected through research sources of seismic instrumentation by professionals and there were interviews with a specialist of the CISMID to expand the information and validate it. In addition, the networks of the countries of Japan, Ecuador, Mexico and Chile to see their seismic instruments, also how they are preventing earthquakes with the help of seismic instruments, after that compare with our country, to be able to obtain a reference of our state of seismic instrumentation. In Japan it was found that they have been operating their early warning system since 2011 and a submarine network giving them a potential of seismic information, in the case of Mexico they have stations with seismic instruments operating in a single station and operating their early warning system since 1991, in the case of Chile there is a good amount of seismic instruments similar to Peru, having them an emergency warning system already in operation and with Ecuador there is a smaller amount of seismic instruments compared to Peru.

Keywords: accelerometer, seismograph, sensor, waves, fire belt, network, station.

INTRODUCCIÓN

En la zona del oeste de Sudamérica se singulariza por tener una de las regiones de importante potencial que tiene el mundo, es por eso la frecuencia de ocurrencia de sismos de diferentes magnitudes a distintos niveles de profundidad. Perú forma parte de la zona por eso la continuidad de sismos permiten a los profesionales comprender y determinar a detalle la aparición de fuentes sismogénicas en todo el Perú (Tavera y Buforn, 2001).

Habitualmente los sismos del territorio peruano tienen el origen en el desarrollo del proceso de subducción de la placa oceánica con la placa continental con la velocidad relativa de 7 centímetros por año según el instituto geofísico del Perú. Igualmente, una considerable actividad sísmica pasa en lo profundo del continente por la prolongada deformación de cubierta terrestre y esa manifestación en superficie nos deja trazar los importantes sistemas de fallas que se encuentran en los bordes y encima de la cordillera de los andes.

Para los países circundante a la zona del cinturón de fuego del pacifico, constituye un problema muy importante y requiere ser evaluada permanentemente considerando los aspectos que influirán en la peligrosidad sísmica ocasionando daños colaterales y difíciles de enfrentar si es que no se tiene alternativas preventivas.

El análisis de instrumentación sísmica y propuesta de mejora preventiva representa una de las alternativas para una mejor prevención de la población ante un sismo de gran magnitud, conociendo los instrumentos sísmicos, los cuales nos ayudaran a detectar el punto de inicio del sismo, y la propuesta de mejora preventiva, la cual beneficiara en la comunicación a la mayor parte de la población con los diferentes medios de comunicación.

Comparado con los países del cinturón de fuego del pacifico, se verá las importantes herramientas que están usando actualmente los países que pasan la misma situación de Perú y su actuar frente a este gran problema de actividad sísmica, se va a comprar los instrumentos sísmicos con los que tiene actualmente el Perú y analizar si estamos en un nivel óptimo o menor que ellos.

Tacna se encuentra en el sur del Perú, zona donde se encuentra la mayor actividad sísmica del país, si bien en los últimos años no se ha tenido sismos de gran magnitud, pero se puede detectar sismos de menor magnitud cada cierto tiempo, el sismo de mayor magnitud recientemente fue un día de 23 de junio de 2001. Toda la zona sur del Perú fue dañada por un sismo de magnitud 8,2Mw provocando perjuicios en una zona que están las regiones de Tacna, Arequipa, Ayacucho, Moquegua y a las

ciudades de Iquique y Arica del país de Chile, ocasionando la pérdida de muchas vidas humanas y destrozo total o parcial de muchas edificaciones.

La instrumentación sísmica del Perú nos permite estar más preparados, en ese sentido la presente investigación tiene como objetivo dar a conocer los instrumentos sísmicos que ayudan tanto en la detección, estudio y así como en la prevención frente a los sismos y analizar el nivel de instrumentación sísmica del Perú frente a los demás países del cinturón de fuego del pacifico.

Se pretende realizar una propuesta de alternativas de difusión de alerta sísmica. Para ello, la presente investigación se desarrolla en cinco capítulos.

El capítulo I se presenta el planteamiento del problema, en el que se desarrolla la descripción del problema, formulación, justificación, objetivos e hipótesis.

El capítulo II se presenta el marco teórico, en el cual están primeramente los antecedentes que nos servirán como una base para la investigación, luego se describen las bases teóricas y definiciones de términos usados en el estudio y sirven para el desarrollo del contenido.

El capítulo III se presenta el marco metodológico, se desarrolla los aspectos metodológicos que sustentan la presente investigación, especificando el tipo, diseño, población y muestra, operacionalización, técnicas e instrumentos.

El capítulo IV se presenta todo el resultado del análisis de los instrumentos sísmicos del Perú, así como la comparación entre los países del cinturón de fuego y la propuesta de alternativas de difusión de alerta sísmica.

El capítulo V se da a conocer la discusión del presente trabajo entre los resultados obtenidos.

En la última parte de la investigación se presenta las conclusiones, recomendaciones, referencias bibliográficas y anexos.

CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción Del Problema

El cinturón de fuego, es un conjunto de fronteras de placas tectónicas ubicado en el pacífico, las cuales están en permanente fricción por ende acumulan tensión, además la zona concentra actividad volcánica constante. En esta zona las placas de la corteza terrestre se hunden a gran velocidad (varios centímetros por año) y a la vez acumulan enormes tensiones que deben liberarse en forma de sismos.

Se extiende sobre 40 000 kilómetros y tiene forma de herradura, posee 452 volcanes y concentra más del 75% de volcanes activos e inactivos del mundo. El 90% de los terremotos de mundo y el 80% de los más grandes se producen en esta zona. Los mayores sismos registrados en toda la historia escrita en la humanidad, tuvieron su origen precisamente en algún lugar de su recorrido, dentro de esta zona se encuentra Perú, justo en la zona de subducción de la placa nazca (OCEÁNICA) y la placa sudamericana (CONTINENTAL), estas ocurrencias presentan un peligro permanente para los edificios y a la vida humana

En el territorio peruano, a lo largo de nuestra historia hemos sufrido varios desastres naturales, que han causado daños a los materiales, edificios, infinitas pérdidas económicas, numerosas víctimas y así retrasando el desarrollo de nuestras ciudades y pueblos. Dentro de los desastres naturales se encuentran los sismos, que ocurren de tiempo en tiempo, pero a medida que ocurren pueden traer tragedias hacia los edificios y a los seres humanos.

La principal zona de riesgo en el territorio del Perú es el sur en la costa, ósea las regiones de Tacna, Moquegua y Arequipa, estando ubicados en la zona de subducción de la placa nazca y la placa sudamericana dicha zona tiene una gran actividad sísmica.

En esta región peligrosa ha ocurrido sismos de gran impacto como ocurrido en el año 1604 en Moquegua que alcanzo XI en la escala de Mercalli, otro como en el año 1687 en Arequipa alcanzó un grado VIII en la escala de Mercalli y en el año 1833 en Tacna alcanzó a VIII en escala de Mercalli.

El sismo de más impacto, reciente en la ciudad de Tacna fue el del 23 de junio del 2001, afecto a toda la zona sur del país, el epicentro fue en la región sur a 82 kilómetros al noroeste de la ciudad de Ocoña, quienes soportaron una intensidad de VII en la escala de Mercalli y en caso de Tacna fue de VII en escala de Mercalli.

En las tres ciudades importantes del sur Arequipa, Tacna y Moquegua sufrieron daños considerables a sus estructuras en los edificios, principalmente en zonas

periféricas donde no siempre son construidas con elementos fuertes o siguiendo normas y/o consideraciones estructurales, resultaron con daños considerables a la estructura o en el peor de los casos el derrumbe de elementos o de toda la estructura haciendo daño a los propios usuarios ocasionando múltiples heridas o la muerte.

Ante un sismo el tiempo de respuesta es casi nulo porque viene raudamente y sin aviso, por lo tanto, no se tiene un tiempo de respuesta, si nos encontramos en un edificio de muchas personas, pero con el avance del tiempo y de la tecnología, se puede obtener una prevención mayor, mediante la ayuda de los instrumentos sísmicos.

Países como Japón que implemento un sistema de alerta temprana desde el año 2007 y México desde el año 1991 cuentan con sistemas de alerta temprana de sismos, ni bien son algunos segundos de aviso en cuanto a tiempo son suficientes para tener una reacción mucho más rápida y poder tomar precauciones mínimas así aumentando la prevención que ellos tienen contra un sismo, viendo el campo de acción, en nuestro territorio peruano contamos con instrumentos sísmicos, pero de esa magnitud, tendremos la prevención que tienen otros países de igual probabilidad que Perú de sufrir un sismo de gran magnitud, aumentando el riesgo de perder vidas humanas.

1.2. Formulación Del Problema

1.2.1. Problema General

¿Cuál es la instrumentación sísmica para una propuesta de mejora preventiva comparada con los países del cinturón de fuego del pacifico?

1.2.2. Problemas Específicos

- ¿Cuál es la instrumentación sísmica del Perú?
- ¿Cuál es el nivel de instrumentación sísmica del Perú frente a los demás países del cinturón de fuego?
- ¿Cuáles son las alternativas de difusión de una alerta sísmica?

1.3. Justificación e Importancia

 Desde el punto de vista científico
 Es importante conocer la situación actual de nuestros instrumentos sísmicos para poder tener algún mecanismo de prevención y/o mejorar nuestros propios instrumentos con otros para tener una mejor capacidad de reacción ante un sismo.

Es importante dar a conocer los instrumentos sísmicos, ya que en los estudios sobre esta área son muy limitados.

Desde el punto de vista social

En Perú a lo largo de nuestra historia hemos sufrido por innumerables sismos que han producido daños a nuestros bienes o a nosotros mismos, así retrasando el progreso de las personas afectadas.

 Desde el punto de vista económico
 Si bien los instrumentos sísmicos deben tener un precio alto, pero si podemos reducir el número de heridos y/o muertos, el desarrollo será mucho mayor para un país.

1.4. Objetivos

1.4.1. Objetivo General

Análisis de la instrumentación sísmica para una propuesta de mejora preventiva comparada con los países del cinturón de fuego del pacifico.

1.4.2. Objetivos Específicos

- Determinación de la instrumentación sísmica del Perú.
- Evaluación del nivel de instrumentación sísmica del Perú frente a los demás países del cinturón de fuego.
- Propuesta de alternativas difusión de alerta sísmica.

1.5. Hipótesis

1.5.1. Hipótesis General

La instrumentación será más efectiva con una propuesta de mejora preventiva con los países del cinturón de fuego del pacifico.

1.5.2. Hipótesis Específica

- La instrumentación sísmica del Perú actualmente cuenta con solo sismógrafos, acelerógrafos y equipos GPS.
- El nivel de instrumentación sísmica del Perú no está en un nivel desarrollado frente a los demás países del cinturón de fuego del pacifico.
- Propuesta de alternativas difusión de alerta sísmica para las instituciones públicas del estado.

CAPITULO II: MARCO TEÓRICO

2.1. Antecedentes

2.1.1. Nivel Internacional

Álvaro Guzmán Onofre y Mario Alberto Valdés Martin (2012) presentaron la tesis de pregrado "detección de sismos utilizando un diodo laser" presentando la creación de un sismómetro con un objeto adicional, un diodo laser y un arreglo óptico de espejos, el cual funcionara para conformar el sensor del sismógrafo. Los resultados obtenidos fueron construir un sismógrafo con un costo barato, el cual tuvo un presupuesto de \$512 (dólares americanos), esta propuesta permite la adición del medidor de sismos en caso de áreas reducidas por el arreglo ajuste por la cual viaja la luz del láser con esto buscan establecer un instrumento simple, barato y pequeño en muchos lugares, así también originar una buena reacción ante la ocurrencia de un sismo.

Luz Marina Sotelo Almendarez y Erick Yamir Requene (2016) presentaron la tesis de pregrado "Sismógrafo electrónico de medición y detección de movimiento telúricos con salida impresa, para la carrera de ingeniería geológica de la unan-managua 2016." Presentando el desarrollo de un prototipo de un sismógrafo, controlado por micro controlador atmega 32U4, el cual se encuentra en la placa arduino optando a la elección de la última placa creada por arduino tomando en cuenta las características que brindaran el proceso adecuado con su equipo. El equipo es controlado por medio de un lenguaje de programación C++. El funcionamiento del equipo se basa en registros de vibración, golpe o movimiento que detecte el sensor piezoeléctrico, el cual manda señales eléctricas al arduino de manera constante, el cual por medio de la programación genera una señal en donde se observa las frecuencias altas y bajas que han sido detectadas. Se muestra el presupuesto de 2 sensores los cuales son: sensor piezoeléctrico con un costo total de \$454,1 (dólares americanos) y el sensor acelerómetro con un costo total de \$623,1 (dólares americanos).

2.1.2. Nivel Nacional

Freddy Javier Ccallo Huaquisto (2003) presentó la tesis de pregrado "La magnitud de sismos locales y regionales ocurridos en Perú a partir de la onda lg y la duración de su registro efectos y daños en la ciudad de Moquegua debido al sismo de

Arequipa del 23 de junio de 2001" en el cual propuso procedimientos prácticos y rápidos para tasar la magnitud de los sismos sucedidos a distancias locales y regionales y reconocidos por las estaciones sísmicas que están dentro de la red sísmica nacional del Perú (RSN), administrada por el instituto geofísico del Perú. El utilizó como fuente de datos 700 sismos sucedidos en el Perú dentro del periodo 2000 - 2001, para así poder obtener el valor de la magnitud mb (LG) se realizó, iniciando por la amplitud y el periodo de la onda Lg establecida por datos obtenidos de ocho estaciones sísmicas. Los resultados que obtuvo para la intensidad de sismos sucedidos del Perú exhiben una completa congruencia en contrastar con los datos obtenidos por instituciones internacionales (NEIC y ISC). El empleo de la onda LG ayudó en poder calcular los datos de magnitud para sismos diminutos igual a 2,5 mb (LG), en cuanto al tiempo del reconocimiento de los sismos se ha podido conseguir dos relaciones, la primera que tiene en cuenta el tiempo y la segunda, tiene en cuenta la distancia epicentral y profundidad del foco. Estas relaciones permiten facilitarnos enormemente el cálculo de los indicadores hipocentrales de sismos pasados en Perú por parte de las instituciones pertinentes. Los valores de magnitud son correlacionados con otras como la mb (LG) y MS.

Iván Arístides Córdova Krugg (2020) presentó la tesis de pregrado "Empleo de la tecnología en la prevención y atención de la población damnificada en caso de desastres naturales en el Perú,2017 "la cual tuvo como objetivo identificar una relación que existe entre el empleo de la tecnología, la prevención y la atención de la población damnificada en caso de desastres naturales, 2017. Fue un tipo de estudio aplicado de enfoque cuantitativo, no experimental transversal y un alcance correlacional, como población se consideró a funcionarios de Instituto de defensa civil quienes realizan el empleo de la tecnología en la prevención y atención de la población damnificada en caso de desastres naturales en el Perú, aplicándose una encuesta a toda la muestra, la cual fue constituida por 73 funcionarios. Tras la encuesta se obtuvo que el 79,5% de los funcionarios asigno el nivel "casi siempre" de conocimiento de empleo de la tecnología de la prevención y atención, en la misma línea de análisis, los mismos funcionarios respondieron en un 87,7% en el nivel "casi siempre" en el conocimiento de prevención y atención a la población damnificada en caso de desastres naturales.

2.1.3. Nivel Local

Juan Erik Cabrera Huayhua (2019) presentó la tesis de posgrado "La gestión de riesgo de desastres y la responsabilidad social en el gobierno regional de Tacna, 2019"

la cual tuvo como objetivo principal determinar la relación entre la gestión de riesgo de desastres y la responsabilidad social en el gobierno regional de Tacna, 2019, siendo su diseño no experimental, donde la muestra fue 174 trabajadores, la técnica usada fue la encuesta, el instrumento fue el cuestionario y el enfoque fue cuantitativo. Se encontró que 64,9% del personal considera que es el nivel regular de la gestión de riesgo de desastres que caracteriza a la entidad, siendo la dimensión más destacada la "Gestión Correctiva"; y que el 67,2% del personal considera que es de nivel regular la responsabilidad social que caracteriza a la entidad, siendo la dimensión externa más destacada. Se concluye que existe relación directa y alta entre la gestión del riesgo de desastres y la responsabilidad social en el gobierno regional de Tacna, puesto que se halló un valor de Rho= 0,793 y un valor de p= 0,000; de forma similar entre las dimensiones (prospectiva, correctiva y reactiva) y la responsabilidad social.

Edgar Chura Arocutipa (2012) presentó la tesis de posgrado "Evaluación y propuesta de un plan de gestión del riesgo de origen sísmico en el distrito de ciudad nueva – Tacna" tuvo como objetivo principal, la elaboración y una propuesta de un plan de gestión del riesgo de origen sísmico en el distrito de Ciudad Nueva - Tacna, para disminuir la vulnerabilidad y el riesgo sísmico, la evaluación funcionó a través la obtención de datos e información técnica ya existente y labores de campo a través de encuestas se obtuvo una prueba de 86 viviendas. Los resultados de la investigación, determinaron un nivel de riesgo sísmico alto, la razón es por estar situados en un área de alto peligro sísmico, las viviendas denotan una enorme vulnerabilidad sísmica debido a defectos tanto como en el proceso de diseño y elaboración, ejecución, mala calidad de materiales, malos procesos constructivos, generalmente las viviendas hechas por la autoconstrucción. Sobre el tema del riesgo social obtuvo los siguientes resultados determinando un nivel de riesgo muy elevado por el abandono de organización comunal, la falta de información sobre los peligros, falta de capacitación en la gestión de desastres, defectos en la elaboración para el cuidado de emergencias, el plan propuesto se divide en tres componentes, el primer componente se centra por disminuir la vulnerabilidad institucional de la administración municipal por medio del reconocimiento de instancias de organización interna necesarios y de los equipos urbanísticos con el fin de la mejor gestión de riesgo. El segundo componente establece medidas para reducir la vulnerabilidad social, organización de la comunidad mediante de reuniones de coordinación, instrucción e investigación que permitan ayudar a fomentar una percepción más clara de los riesgos y animar la urgencia de adquirir conductas adecuadas. El tercer componente reúne medidas para disminuir la vulnerabilidad de la estructura y física. El plantea llegar al objetivo mediante la ejecución de reuniones de

recuperación urbana, reforzamiento de viviendas, construcción de muros de contención en laderas, mantenimiento de vías, arborización de laderas.

2.2. Bases Teóricas

2.2.1. Cinturón De Fuego

El cinturón de fuego del pacifico es una línea imaginaria que, con el correr del tiempo – aproximadamente desde 1903 hasta la fecha, científicos de todo el planeta fueron estudiando los distintos sismos cuya magnitud superara los 5,5 en la escala de Richter. La actividad sísmica y volcánica generada es un peligro potencial para cientos de millones de habitantes de unos 40 países distintos. El cinturón de fuego del pacifico se formó como consecuencia del movimiento de las placas tectónicas. La litosfera de la tierra está dividida en grandes losas o secciones de unos 80 kilómetros de espesor conocidas como placas, las cuales encajan entre sí, pero no están completamente unidas, pues se mueven como resultado de procesos internos del planeta que suceden miles de kilómetros debajo de la superficie terrestre (Miguel Castro 2021).

2.2.2. Sismos

El nombre de sismo fue utilizado por primera vez en España por el sismólogo Vicente Inglada Ors.

El nombre de sismo se definió de la siguiente manera: "la ruptura súbita del equilibrio elástico de una región de lo interior de la tierra, son causados por el desplazamiento de los dos lados de un plano de fractura de cizalla con el relajamiento consiguiente de las deformaciones elásticas acumuladas por la acción de esfuerzos diferenciados que actúan en diversas regiones de la corteza terrestre" (Rodríguez, F. 1999).

Una de las importantes causas de los sismos es la alteración de las rocas cercanas a una falla activa, las cuales libran la energía potencial almacenada en ellas, dan creación a temblores. Los fenómenos relacionados a los volcanes, los desplazamientos de laderas y el hundimiento de cavidades kársticas, igualmente producen sismos.

Hay áreas que tienen superior predisposición a pasar por sismos. Son regiones, que tienen acumulación de energía generadas por los roses de las placas tectónicas hace que la actividad de reajuste sea más reiterada en la superficie de la Tierra.

La capa más superficial de la Tierra, denominada litosfera es rígida, está compuesta por material que puede fracturarse cuando se ejerce presión sobre ella y forma un rompecabezas llamada placas tectónicas. Estas placas viajan como "bloques de corcho de agua" sobre la astenosfera, la cual es una capa visco-elástica donde el material fluye al ejercer una fuerza sobre él.

Esta manifestación estimula al movimiento de las placas y es en los límites de placas, donde se chocan unas con otras, produciendo fuerzas de fricción, las cuales conservan atoradas dos placas juntas, generando enormes trabajos en los materiales. Cuando la fuerza de fricción es superada, genera un rompimiento fuerte y la liberación de una enorme cantidad de energía acumulada, produciéndose el fenómeno del sismo que radia la energía acumulada en forma de ondas, las cuales se propagan en todas las direcciones.

Un sismo comienza por un punto localizado denominado foco o hipocentro, que radica en la superficie de rotura de la falla, la cual está situada por latitud, longitud y profundidad. La proyección del foco en el plano de superficie, se denomina epicentro y es referenciado con coordenadas de latitud y longitud. La rotura se desarrolla desde el hipocentro a lo largo de la superficie de ruptura a una velocidad finita, hasta que se detenga. El esfuerzo aglomerado se libra enteramente al llegar a un área más fuerte que la falla o porque se ha llegado al final de la misma. La duración completa del movimiento ocasionado por un sismo está enlazada con la longitud de tiempo necesario para que la rotura se desarrolle a lo largo de la superficie de ruptura completa.

Figura 1 Mapa de la división de las placas tectónicas del mundo

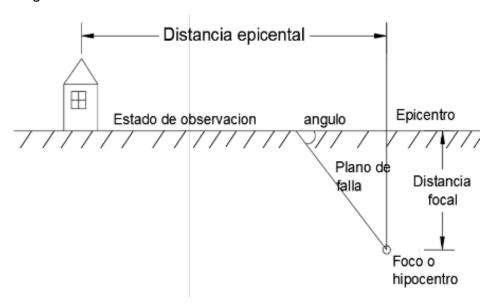

Nota. Las placas que dividen todo el mundo, Saarikoski y Saavedra (2010)

Figura 2
Convergencia entre placas

Nota. Las placas que estan en el territorio peruano y se muestra la convergencia. Tavera, H, Bernal (2002).

Figura 3 Origen de un sismo

Nota. Se muestra el origen de un sismo, asi como sus elementos que miden los sismologos.

2.2.2.1. Distancia Epicentral

Distancia existente entre un observador y el epicentro de un sismo, medida sobre la superficie de la tierra. Al instante de georreferenciar el epicentro de un sismo se está tomando como referencia la plaza principal de la ciudad y/o localidad y su ubicación con respecto al norte geográfico (instituto geofísico del Perú).

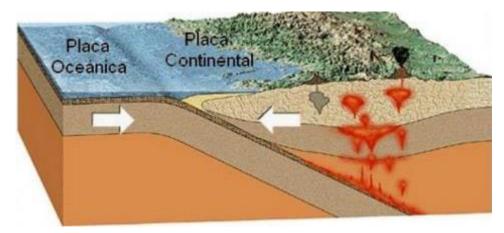
2.2.3. Sismicidad Global

La localización de inicio de un fenómeno sísmico se logra calcular mediante las ondas sísmicas registradas las estaciones sísmicas del mundo. Gracias a esta información se puede realizar mapas de la distribución uniforme de los sismos ocurridos en nuestro planeta, se puede ver en la siguiente figura donde podemos ver un cinturón de movimiento sísmico dividiendo enormes zonas oceánicas y continentales, con excepciones en áreas donde no sufren sismos. La distribución de los sismos geográficamente en el mundo muestra regiones con una importante actividad sísmica, siendo la principal llamada cinturón de fuego, que cubre totalmente la zona del oeste del territorio americano, que inicia en Alaska y llega al sur de Chile y también por la parte norte de las islas Aleutianas, siguiendo por todas las islas de Japón hasta Indonesia y

Nueva Zelanda. La segunda zona denominado Mediterráneo – Himalayo, extendida por las islas Azores al sudoeste de la península Ibérica, pasando por Italia, Grecia, Turquía, Persia, llegando hasta el Himalaya y norte de la India y de China, igualmente otra zona está conformada por las cordilleras submarinas que separan el océano Atlántico en partes, la del océano Indico y la del océano Pacifico, frente a las costas occidentales de América del sur. Las investigaciones de sismicidad de estas zonas sirven para ratificar la teoría de la tectónica de placas y la formación de los continentes.

Figura 4
Zonas sísmicas del mundo

7-1-25-2


GLOBAL SEISMIC HAZARD MAP

Nota. Los países del mundo dentro de las zonas sísmicas del mundo.

2.2.4. Sismicidad En El Perú

La zona del borde occidental de América del sur es una de las áreas sísmicamente más activas en la Tierra y su acción más importante está asociada al proceso de subducción de la placa oceánica (Nazca) bajando por la placa continental (Sudamericana).

Figura 5
Proceso de subducción

Nota. J.P. Rothe, Seismes et volcans (1972).

El Perú es parte de esta región y frente a su línea de costa se genera con mucha frecuencia sismos de variadas magnitudes a diferentes a niveles de profundidad, siendo los más grandes los que han generado destrucción importante en los diversos departamentos distribuidos de norte a sur, cercanos a la costa. Otro tipo de sismicidad es la generada por las deformaciones corticales, que se encuentran encima de la cordillera andina y a lo largo del área denominada sub-andina, en el cual se generan sismos de menores en magnitud y frecuencia.

La frecuencia continua de sismos en el territorio peruano, juega un trabajo importante en los variados desarrollos sismo tectónicos que se generan en el tiempo como la deformación de rocas, formación de fallas, fenómenos precursores de grandes sismos y la rotura sísmica que tienen duraciones del orden de sesenta segundos para un sismo de magnitud Ms igual a 7.

Los datos sobre la actividad sísmica en el territorio peruano son separados en sismicidad histórica e instrumental. La primera considera a los sismos sucedidos en el periodo 1500 y 1959, pero la segunda cuenta los sismos sucedidos partir del año 1960 hasta la actualidad, en el año 1960 se inicia la instalación de la red sísmica mundial (World Wide Seismological Standard Network) y la puesta en operatividad de redes sísmicas regionales en cada país.

2.2.4.1. Tectónica Del Perú

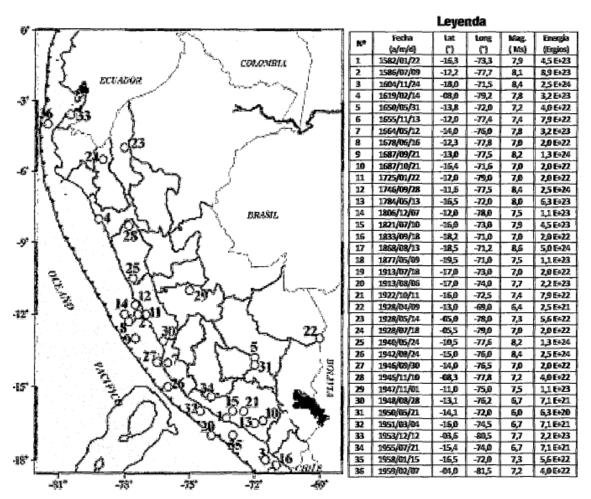
Los andes son un claro ejemplo de cordillera generada por el resultado del proceso de subducción de las placas. Esta cordillera se extiende a lo largo del continente sudamericano, desde Venezuela hasta el sur de Chile con una anchura que oscila por

los 250 kilómetros en el área central del Perú y 500 kilómetros en la frontera Chile – Perú.

2.2.4.2. Sismicidad Histórica

Los datos sobre la sismicidad histórica del Perú esta desde los tiempos de la conquista y colonización del país y puede encontrarse extendida en diferentes obras inéditas, manuscritos, crónicas, narraciones, informes administrativos de aquellos años. Gran parte de la investigación se recolectó y luego publicado por Silgado en 1978 y Dorbathen 1990. Es bueno tener la conciencia sobre la calidad de esta información depende de la distribución y densidad de la comunidad en las zonas sufridas en los tiempos, cabe la posibilidad que haya ocurrido sismos de gran magnitud en zonas no habitadas donde era difícil establecer comunicación.

Este hecho expone la falta de datos sobre sismos que pudieran o no haber ocurrido en la zona de alta cordillera y zona sub-andina.


En la siguiente figura, se muestra la localización epicentral de los sismos sucedidos por el periodo de 1513 y 1959 (max > VII en la escala de Mercalli modificada), los mismos que en casi toda su totalidad se reparten por la línea de la fosa marina y región de la costa, teniendo la mayor cantidad de sismos en la zona centro y sur del Perú porque estas zonas eran las que tenían mayor población y en donde se construyeron las ciudades principales después del siglo XVI. Acorde a la figura, dentro del continente tiene un número menor de sismos considerablemente. Es necesario indicar al margen de los posibles errores en la localización epicentral, la profundidad focal de los sismos históricos no ha sido determinado con pericia, sin embargo, porque los daños que ellos produjeron, es posible considerar que los sismos ocurrieron a profundidades superficiales (h< 60 kilómetros).

Entre los sismos más recordados ocurridos durante el periodo histórico se tiene a los de 1619 y 1953 (tuvo una magnitud de VII en la escala de Mercalli modificada) ambos generaron la muerte y devastación en las ciudades de Tumbes y Trujillo. Los sismos de 1586 (IX MM), el primer sismo importante del cual se obtuvo documentación muy importante e histórica, 1687 (tuvo una magnitud de VIII en la escala de Mercalli modificada) y 1746 (X en la escala de Mercalli modificada) pusieron en ruinas casi totalmente a la ciudad de Lima, el sismo produjo un tsunami con olas de 15 a 20 metros de altura, el cual inundó por completo al puerto del Callao. Asimismo, los sismos de 1604 (IX en la escala de Mercalli modificada), 1784 (X en la escala de Mercalli

modificada) y 1868 (X en la escala de Mercalli modificada) destruyeron parcialmente a las ciudades de Arequipa, Moquegua, Tacna y Arica.

En el interior del País, la información disponible solamente permite considerar a los sismos de 1650 (tuvo una magnitud de VII en la escala de Mercalli modificada), 1946 (XI en la escala de Mercalli modificada) y 1947 (VII en la escala de Mercalli modificada) el cual genero la muerte y devastación en las ciudades de Cusco, Huaraz y Satipo.Como se ve en la figura 6.

Figura 6
Distribución de actividad sísmica

Nota. Distribución epicentral de la actividad sísmica histórica del Perú periodo 1513-1959.

2.2.4.3. Sismicidad Instrumental

El análisis y evaluación de la división espacial de los sismos sucedidos en Perú, en el periodo instrumental, se efectuó por numerosos investigadores, utilizando datos o

información telesísmica y los resultados que se obtuvieron permitieron comprender las propiedades de la forma de las importantes fuentes sismogénicas asociados a la deformación cortical y al proceso de subducción de la placa de nazca bajo la placa sudamericana.

En la siguiente figura, se muestra que los sismos con foco superficial (altura <60 kilómetros), representados con círculos se producen en la región oceánica y se distribuye de norte a sur, en sentido paralela a la línea de costa. En esta región la frecuencia de sismos es numerosa y con continuidad se generan sismos de intensidad elevada como los ocurridos el 23 de junio del 2001 (Ms= 8,0) que afectaron a los departamentos de Arequipa, Moquegua y Tacna con intensidades de VII – VIII en la escala de Mercalli modificada y el 15 de agosto del 2007 (Ms=8,0) que produjeron daños, destrucción en el departamento de Ica, siendo ambos los más grandes ocurridos en los últimos 100 años en el Perú. El otro grupo de sismicidad con foco superficial se localiza dentro del continente y debe su inicio al proceso de subsidencia del escudo brasilero bajo la cordillera andina y a la deformación cortical que se produce en la alta cordillera, por lo cual estos sismos de menor intensidad y habitualidad.

La sismicidad en el borde oriental de la cordillera andina es mayoritaria en las zonas del norte y la zona central del Perú, mientras que, en la región sur la cantidad de sismos es menor debido posiblemente a que la cordillera presenta mayor raíz (75 kilómetros) y espesor (200 kilómetros), imposibilitando el desarrollo de rápidas deformaciones y la ocurrencia frecuente de sismos.

Del mismo modo en la siguiente figura, se observa que los sismos con foco intermedio, representados por cuadrados, se reparten en superficie de modo desigual, pero, es factible poder diferenciar tres grupos. El primer grupo es paralelo a la línea de la costa por debajo de los 9° sur, el segundo en la zona del norte y zona central con sismos distribuidos en toda la cordillera oriental y la región sub-andina continuando un lineamiento N-S. El tercero y más importante debido al gran cantidad de sismos, se localiza en toda la zona sur, teniendo su posible relación con la presencia de la cadena volcánica.

Para sismos con foco poco profundo (h>300 kilómetros), se puede observar que la sismicidad se distribuye mayoritariamente en la parte oriental del Perú concentrada en la frontera Perú – Brasil, siguiendo un alineamiento N-S y en la frontera Perú – Bolivia (entre 13° y 15°) de manera dispersa.

Colombia

Colombia

Colombia

Brasil

O ls 60 km

Res 60 ch 5350 km

C colombia

Figura 7 Actividad sísmica del Perú

Nota. Distribución espacial de la actividad sísmica en el Perú periodo 1960-2007.

2.2.5. Zonificación Sísmica En El Perú

En la elaboración del mapa de zonificación sísmica en nuestro país, se ha considerado las condiciones regionales de sismicidad que engloban a todos los parámetros sísmicos significativos como son la ubicación de los focos sísmicos, trayectoria de recorrido de las ondas, distancia epicentral y energía liberada, todos contenidos y definidos en términos de la aceleración del suelo producido por los sismos y que son medidos sobre roca o terreno firme, a lo que se agregan las amplificaciones que sufren, las ondas sísmicas por las condiciones locales.

El mapa de zonificación sísmica, detallado en la norma sismorresistente NTE-030-2018 (Ministerio Vivienda y Construcción 2018), ver la siguiente figura, el territorio peruano, esta zonificado en cuatro zonas sísmicas:

Zona 1, representa aquellas áreas en donde el potencial sísmico es bajo y no se espera la ocurrencia de sismos capaces de producir valores altos de aceleración.

Zona 2, representa aquellas áreas en donde el potencial sísmico esta entre bajo e intermedio y en general se producen sismos de magnitud moderada (M<4,0), que generan aceleraciones del orden entre de 100 cm/seg^2 a 200 cm/seg^2.

Zona 3, representa aquellas áreas donde el potencial sísmico es intermedio y en general se producen sismos de magnitud moderada (M<6,0), que generan aceleraciones del orden de 200cm/seg^2.

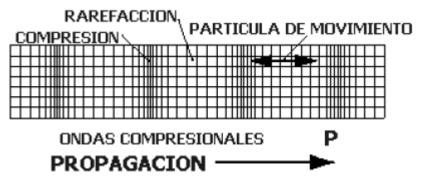
Zona 4, representa aquellas áreas en donde el potencial sísmico es alto debido a que es afectada por la frecuencia de sismos de intensidad elevada (M<7,0) que producen aceleraciones mayores a 300cm/seg^2.

Figura 8
Zonificación sísmica del Perú

Nota. Las diversas zonas sísmicas del Perú según la norma E.030.

2.2.6. Ondas Sísmicas

En un sismo se propagan ondas que van por el interior de la tierra. Continúan por rutas curvas porque la muy cambiante densidad y composición al interior de la Tierra.


A este tipo de ondas se llaman ondas internas, centrales o de cuerpo, propagan los temblores preliminares, pero tienen minúsculo poder de devastación. Las ondas sísmicas están clasificadas en ondas primarias (P) y secundarias (S).

2.2.6.1. Ondas Primarias

Las ondas P (primarias) son ondas longitudinales, es por eso que el suelo es variadamente comprimido y dilatado en el sentido de la transmisión.

Estas ondas generalmente viajan a una velocidad 1,73 más rápidas que las ondas S y podrían ir mediante cualquier tipo de materia. Sus velocidades normales son de 330 m/s en el aire, 1450 m/s en el estado líquido y cerca de 5000 m/s en las rocas. Como se ve en la figura 9.

Figura 9 Transmisión de ondas P

Nota. El movimiento de la onda primaria.

2.2.6.2. Ondas Secundarias

Las ondas S (secundarias) son ondas transversales o de corte, es por eso que el suelo es desplazado perpendicularmente al sentido de transmisión, alternadamente va de un lado a otro.

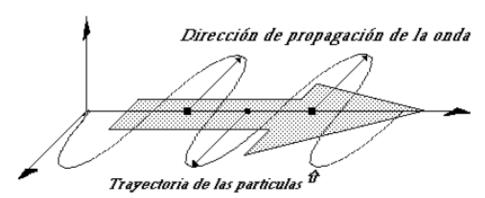
Estas ondas viajan solamente por medio de solidos porque los líquidos no podrían aguantar esfuerzos de corte. Su velocidad es alrededor de 58% la de una onda

P para cualquier material sólido. Normalmente la onda S tiene mucha mayor amplitud que la onda P y se siente más fuerte que ésta. Como se ve en la figura 10.

Figura 10
Transmisión ondas secundarias

Nota. Movimiento de la onda Secundaria

2.2.7. Ondas Superficiales

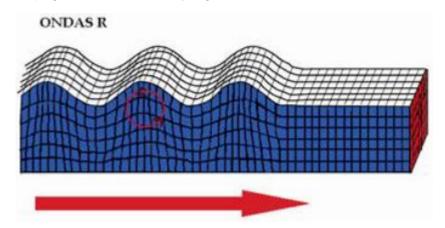

Cuando ocurre que las ondas generadas en el foco llegan a la superficie son influidas por una discontinuidad y se manifiestan en ondas de superficie, su velocidad es de 0,9 veces a la de las ondas transversales. Estas ondas superficiales son producidas por las ondas de cuerpo y se clasifican en ondas Love y ondas Rayleigh.

2.2.7.1. Ondas Love o Tipo L

Según los estudios de la universidad de Costa Rica (2001), estas producen cuando un medio elástico se encuentra estratificado, esta situación se produce en nuestro ambiente pues se encuentra formado por diferentes capas, las cuales tienen características físicas y químicas. Años atrás se dedujo que "las ondas de Love se propagan con un movimiento de las partículas, perpendicular al sentido de transmisión, como las ondas S, solo que, polarizadas en el plano de la superficie del planeta, es decir sólo poseen la componente horizontal a superficie" Hough, A.E. (1991).

A nivel general su existencia puede explicarse por la existencia del vacío o un medio de menor cantidad de rigidez, pretende a igualar la energía generando este tipo especial de vibraciones. Como se ve en la figura 11.

Figura 11 *Transmisión de ondas Love*


Nota. Movimiento de la Onda Love.

2.2.7.2. Ondas Rayleigh o Tipo R

Como afirma Paul Gálvez (2013) cuando un material sólido tiene una superficie libre como lo tiene el planeta tierra, se puede producir ondas que viajan en toda la superficie. Estas ondas tienen su máxima amplitud en la superficie libre, esa amplitud disminuye enormemente con la profundidad y son conocidas como ondas de Rayleigh, nombrada así por Johb William Strutt (conocido como Lord Rayleigh), quien predijo matemáticamente predijo la existencia de esta clase de ondas en 1885.

La trayectoria descriptiva de las partículas del medio, transmiten la onda es elíptica retrógrada y ocurre en el plano de transmisión de la onda. Como se ve en la figura 12 y las velocidades en la tabla 1.

Figura 12 Propagación de ondas Rayleigh

Nota. Movimiento de la onda Rayleigh

Tabla 1 *Velocidades y riesgo de los tipos de ondas sísmicas*

Tipo de onda	Velocidad promedio (km/s)	Riesgo
Primarias (P)	1,5 a 5	Bajo
Secundarias (S)	0,86 a 3	Medio
Superficiales (L y R)	0,8	Alto

Nota. Características de las diversas ondas.

2.2.8. Tipos De Sismo

Según el equipo de redacción de más tipos de (2016), los sismos equivalen al rompimiento repentino de las rocas en el interior de la tierra. Esta descarga fugaz de energía se transmite en forma de ondas que provocan el desplazamiento de la superficie.

2.2.8.1. Interplaca

Se producen en las áreas de choque de las placas tectónicas, tienen una exagerada intensidad, un foco profundo y generan mucha cantidad de energía. Alejados de las ciudades.

2.2.8.2. Intraplaca

Se originan de las placas tectónicas, en las fallas locales. Tienen intensidades diminutas o moderadas y se producen cerca de las ciudades, como se ve en la figura 13.

SISMOS
INTRAPLACA

SISMOS
INTERPLACA

Concerniorito
de burdeicos

Lincoloria coceninas

Cuerpos magmissicos
accuradactivas

SOUTH AMERICAN PLATE

Figura 13
Zona de sismos interplaca e intraplaca

Nota. Tipos de sismos

2.2.8.3. De Origen Volcánico

Son producto de los procesos propios de los volcanes, de manera general son de baja magnitud y se limitan al volcán. Como se ve en la figura 14.

Crâter

Chimenea

Volcanes de las zonas de subducción

Volcanes dos puntos calientes (Hot-spot)

Crâter

Chimenea

Magma

Figura 14
Zonas de sismos volcánicos

Nota. Sismos de origen volcánico.

2.2.8.4. Producidos Por El Humano.

Son producidas por las explosiones o por el colapso de algún material.

2.2.9. Sistemas De Detección y Monitoreo Convencional

2.2.9.1. Sismógrafo

Se encargan de realizar mediciones sobre las perturbaciones efectuadas en unos sismos; no obstante, varias clases de instrumentos registran señales sísmicas que se encuentran enmarcadas en una amplia gama de frecuencias; es así que ondas de cuerpo de sismo regionales tienen un contenido especial entre 1 y 10 HZ, de 0,1 a 1 HZ para sismos distantes

El rango de frecuencias registrado en ondas superficiales en la corteza y el manto son entre 0,01 y 0,1 HZ con un periodo comprendido entre 10 a 100 segundos.

Para registrar estas señales es fundamental tener una amplia banda de registros y esto depende de la respuesta instrumental. Existe una amplia gama de instrumentos que registran actividad sísmica tal como se ve a continuación en la tabla 2.

 Tabla 2

 Instrumentos de registros de actividad sísmica

Instrumento	Rango espectral
Piezoeléctricos	10^3 – 10^6 Hz
Acelerómetros	0,01 – 100 Hz
Geófonos de prospección	5 – 50 Hz
Sismómetros de corto periodo	0,2 – 2 Segundos
Sismómetros de largo periodo	10 – 100 Segundos
Extensómetros, deformímetros, Distanciómetros	f<< 0,5 Hz
Banda ancha	0,003 – 30 Hz

Nota. Alternativa para la detección y monitoreo de amenazas sísmicas basadas en arduino.

2.2.9.2. **Sensores**

Los sensores sísmicos se clasifican en base a la respuesta de frecuencia que estos tengan, estos son:

2.2.9.2.1. Corto Periodo

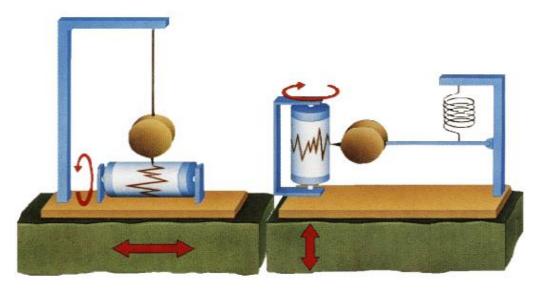
Este tipo de sismómetro esta caracterizado por tener una respuesta en velocidad normalmente plana en el rango de frecuencia entre 1 y 50 Hz (donde se sitúa la sismología de corto periodo).

La respuesta en frecuencia y sobre todo el rango dinámico hace este tipo de instrumento ideal para el estudio de sismicidad local de magnitud moderada a baja, pero no para energías grandes, pues se suele producir la saturación mecánica del.

2.2.9.2.2. Banda Ancha

Aunque la mayoría de las situaciones el contenido de frecuencias de las señales volcánicas se centra en el denominado corto periodo, hay casos en los que existen señales a menor frecuencia que 1 Hz.

2.2.9.2.3. Movimiento Fuerte


Utilizados para detectar movimientos de mediano o fuerte magnitud, por lo que los niveles de aceleración del suelo están en los umbrales detectables de este tipo de instrumentos. Por lo tanto, el uso de sensores de movimiento fuerte (acelerógrafos) no resulta ser una práctica extendida en la sismología volcánica.

2.2.10. El Sismógrafo

El sismógrafo es un equipo funciona como detector y registrador de sismos de manera continua, también registra las ondas sísmicas. Su clasificación tiene dos tipos: El primer tipo de sismógrafo son los sismógrafos horizontales quienes pueden registrar la componente vertical de un movimiento sísmico y están conformados por un péndulo suspendido de un eje horizontal, y el otro tipo son los sismógrafos verticales constituido por un péndulo cuya masa está suspendida de un eje vertical y son detectores de la componente horizontal de un sismo.

En estos tiempos, estos instrumentos han alcanzado un gran valor de desarrollo tecnológico y electrónico, gracias a la tecnología, pero en la forma y los principios básicos se continúan trabajando, así también se en la figura 15 un sismógrafo de péndulo vertical y horizontal.

Figura 15Sismógrafo de péndulo vertical y horizontal

Nota. Sismógrafos que se utilizaban anteriormente, en sentido vertical y horizontal

El equipo consiste en normalmente en una masa suspendida de un resorte atado a un soporte acoplado al suelo, cuando el aguante se mueva al ritmo de las ondas sísmicas, la inercia de la masa hace que permanezca por pocos segundos en el mismo sitio de reposo. Posteriormente cuando la masa sale del reposo, tiende a oscilar.

Pero, ya que esta oscilación posterior del péndulo no refleja el real movimiento de la superficie, es por eso que es necesario amortiguarla.

Este instrumento sísmico es capaz de detectar ambas componentes del movimiento. El papel donde trazara el movimiento producido por el sismo se le denomina sismograma. En la figura 16 se ve la gráfica del sismograma

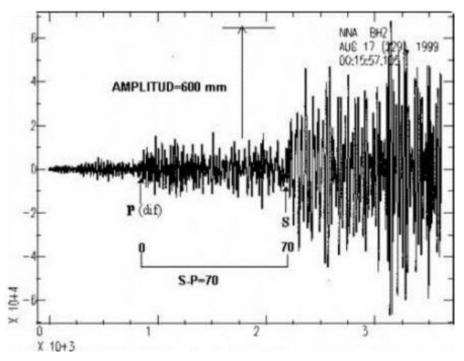
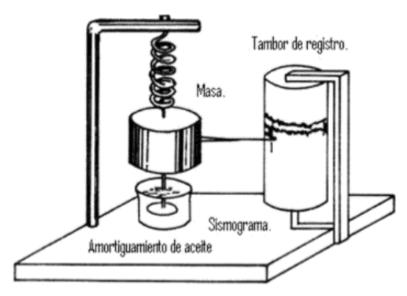


Figura 16 Gráfica del sismograma

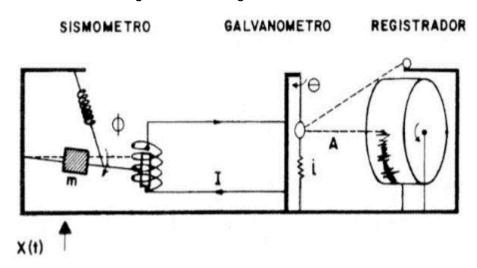

Nota. Sismograma obtenido por un instrumento sísmico.

2.2.10.1. El Sismógrafo Mecánico

Los datos de sobre quién y en qué año se diseñó ese sismógrafo son nulos, sin embargo, Leidy P. (2013) nos habla de un sismógrafo, este instrumento es el más simple se basa en un péndulo o una masa suspendida a un bastidor que al existir ese movimiento causado por la reacción del suelo se desliza relativo a este en virtud de su inercia, estos movimientos son detectados por amplificadores en función del tiempo

Este equipo este compuesto por un detector y un sistema de palancas, los cuales sirven para maximizar el movimiento, donde se cuenta con un papel ahumado que se encuentra anexado a un cilindro que gira a una velocidad fija que a su vez es donde se realiza un registro. En la figura 17 se ve los elementos del sismógrafo mecánico.

Figura 17 Elementos sismógrafo mecánico

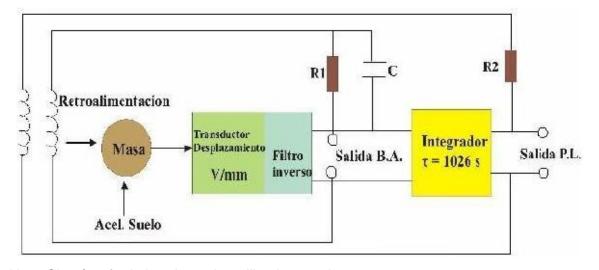


Nota. Sismográfico de tipo mecánico con sus partes.

2.2.10.2. El Sismógrafo Electromagnético

En este tipo de instrumento se utiliza la misma forma de realización que el mecánico, aquí varia en que el desplazamiento de la masa general electricidad al desplazarse una bobina dentro de un campo magnético colocando de imán. Cuando se genera movimiento, en el suelo, se va produciendo una corriente en la bobina proporcional al movimiento del suelo. Un galvanómetro amplifica el movimiento y pasa al registro en papel. En la figura 18 se ve los elementos del sismógrafo electromagnético

Figura 18
Elementos de sismógrafo electromagnético


Nota. Sismógrafo de tipo electromagnético con sus partes.

2.2.10.3. El sismógrafo De Banda Ancha

Este sistema consiste de un circuito de retroalimentación negativo, este produce una fuerza proporcional al desplazamiento de la masa inercial para anular el movimiento relativo. Un transductor eléctrico de la fuerza de retroalimentación que tiene que desplegar para eliminar el desplazamiento. El instrumento fue creado y desarrollado por el príncipe B. Galitzin en 1906, pero, los sismógrafos electromagnéticos habían sido utilizados con frecuencia desde los años de 1950 con un sistema de registro de datos usando el papel.

El importe de fuerza que tiene que ejercer para eliminar el movimiento del péndulo concierne a la aceleración del suelo. Este sistema puede desplegar el ancho de banda y la linealidad de los sismómetros, porque no se ha permitido grandes movimientos de la masa que doblen los resortes o los niveles. La indicación de salida de estos procesos tiene un gran rango dinámico porque los transductores electromagnéticos tienen un amplio rango dinámico. En la figura 19 se ve los elementos del sismógrafo de banda ancha.

Figura 19 *Elementos sismógrafo de banda ancha*

Nota. Sismógrafo de banda ancha utilizado actualmente.

2.2.11. Acelerógrafos

En las proximidades del hipocentro de un sismo, el paso de las ondas sísmicas a través del suelo produce desplazamientos, velocidades y aceleraciones elevadas con un gran contenido de altas frecuencias. Esta zona es llamada "campo cercano" y es de

interés para la ingeniería sísmica, ya que aquí se producen los mayores daños en las estructuras. Este tipo de información es registrado por los acelerógrafos o acelerómetros.

Este instrumento no registra de forma continua y generalmente se activa cuando se produce una aceleración del suelo por encima de un cierto valor de umbral prefijado.

Inicialmente en los antiguos instrumentos de registro (película fotográfica) se producía perdida de los primeros segundos del registro y no se disponía de una base de tiempo absoluto.

Actualmente, los instrumentos de registro digital (cinta magnética o disco digital) poseen una memoria pre evento que permite preservar el registro completo de los primeros segundos; además, de disponer del tiempo absoluto (Freddy Javier Ccallo 2003).

2.2.12. Diferencia entre sismógrafo y acelerógrafo

La diferencia es la siguiente, el sismógrafo es un instrumento que esta todo el tiempo grabando y registrando datos, junto con otros equipos puede calcular epicentros, latitud, longitud, magnitud o cantidad de energía liberada, pero en cambio el equipo acelerógrafo esta todo el día sin trabajar hasta que ocurre un sismo de un valor mínimo y comienza a trabajar, la función es registrar la aceleración de la tierra al momento del sismo.

2.2.13. Escalas Sísmicas

Las escalas sísmicas están conjuntamente relacionadas con la energía que se libera; la intensidad, son los daños que causan los sismos. Ambas escalas son de gran importancia y se necesitan ya que cada una mide sus propiedades y características diversas luego de que ocurra un sismo.

Las escalas de magnitud se relacionan con el desarrollo físico mismo, mientras tanto que la de intensidad está relacionado con lo que ocasiona el mismo sismo en la comunidad.

2.2.13.1. Escala De Richter

La escala sismológica de Richter, igualmente conocida por su nombre más adecuado de escala de magnitud local (ML), es una escala logarítmica arbitraria que asigna un numero para cuantificar el tamaño del terremoto.

Richter hizo progresar su propia escala por los años 1930. El cálculo de la magnitud de un sismo se puede medir sabiendo la duración del tiempo transcurrido entre la aparición de las ondas P y las ondas S y la amplitud de estas.

Las primeras ondas en llegar producen la vibración al medio en el mismo sentido que la del movimiento de la onda, estas son ondas de comprensión y dilatación. La velocidad de transmisión es rápida y es de cinco a once kilómetros por segundo, ahí se manifestarán las primeras ondas en un sismograma. Luego llegarán las ondas secundarias, ondas de corte, que harán vibrar al medio en una dirección perpendicular del sentido de desplazamiento.

La escala se utiliza para dar una evaluación y confrontar con la magnitud de los sismos, estima y mide la energía del terremoto, hipocentro o foco y continua la escala de intensidades que aumenta enormemente de un valor siguiente.

Si bien esta escala no se puesto un límite, hasta nuestros tiempos se ha visto que ningún sismo ha podido superar los 9,6 de magnitud. La magnitud del sismo se acrecienta diez veces de un grado al consecutivo. Un ejemplo simple seria, un sismo de VI grados es 10 veces más intenso que uno de V grados y un sismo de VI grados no es el doble de intenso que uno de grado V, sino 10 000 más potente. En la tabla 3 se da a conocer la escala de Richter en unidades de TNT, asi también se puede conocer sus referencias.

Tabla 3 *Escala de Richter*

Escala Richter	La energía TNT	Referencias
-1,5	1 g	Ruptura de una roca en una mesa de laboratorio.
1	170g	Moderado estallido en una construcción
1,5	910g	Bomba tradicional de la II guerra mundial.
2	6 kg	Estallido de un balón de gas.
2,5	29kg	Bombardeo a la ciudad de Londres.
3	181 kg	Explosión de una planta de gas.
3,5	455 kg	Explosión de una mina.
4	6 t	Bomba atómica de baja Potencia.
5	199 t	Sismo de España, Albolote de 1956.
5,5	500 t	Sismo en Colombia de 2008
6	1,270 t	Sismo de Doublé Spring Flat de 1994.
6,2	20,960 t	Sismo de Morón (2009) Venezuela Estado Carabobo
6,5	31,550 t	Sismo de California de 1994
7	199,000 t	Sismo de Haití de 2010.
7,2	250,000 t	Sismo de Spitak 1988 (Armenia).
7,5	750, 000 t	Sismo de Santiago 1985 (Chile).
7,8	1,250,000 t	Sismo de Sichuan 2008 (China).
8	5,850,000 t	Sismo de Perú 2007.
8,1	6,450,000 t	Sismo de México de 1985 (Distrito Federal)
8,5	31.55 millones de t	Sismo de Sumatra 2007
8,8	100 millones de t	Sismo de Chile 2010
9	150 millones de t	Sismo de Lisboa
9,2	220 millones de t	Sismo de Océano Indico de 2004
9,5	260 millones de t	Sismo de Chile en 1960
10	6,300 millones de t	Sismo por el impacto de un meteorito de 2km de diámetro
13	Teratones	Impacto en la península de Yucatán.

Nota. Escala de Richter con referencias sobre sus magnitudes.

2.2.13.2. Escala De Mercalli

La escala de Mercalli, es una escala arbitraria y/o subjetiva, ya que se basa en la impresión del ser humano sobre el sismo. Es usada para la recolección de datos,

información en regiones, en las cuales no hay equipos sísmicos, o instrumentos adecuados. Esta escala está basada en el sentir de las personas que pasaron por el sismo y sufrieron los daños producto del sismo.

Cuando es utilizada la escala de Mercalli, se está hablando de grados de intensidad. Cuando se establece la intensidad del sismo se debe recurrir a la comprobación de datos antepasados importantes, a dialogar con las personas, noticias, diarios públicos y personales, etc.

La intensidad puede variar en las diversas zonas reportadas para un sismo terremoto. En la tabla 4 se ve la escala de Mercalli con sus grados y una breve descripción.

Tabla 4Escala de Mercalli Resumida

Grado	Descripción
l Muy débil	Imperceptible por el ser humano
II Débil	Solo lo detectan algunas personas que se encuentran en
	reposo.
III Leve	La gente lo percibe dentro de los edificios.
IV Moderado	Vibran las ventanas.
V Fuerte	La mayoría de gente siente el sismo aun estando afuera.
VI Bastante fuerte	Es percibido por toda la población.
VII Muy fuerte	Daños leves en los edificios
VIII Destructivo	Se ven daños graves a los edificios
IX Ruinoso	Se ve pánico en los alrededores.
X Desastroso	Devastación en las ciudades.
XI Muy desastroso	Muy pocos edificios en pie. Fallas en los terrenos
XII Catastrófico	Destrucción total

Nota. Escala de Mercalli con las descripciones de sus grados.

2.2.14. Riesgo Sísmico

Son los efectos económicos y sociales producidas por el fenómeno sismo, por el producto del fallo de los edificios, la capacidad resistente de la estructura ha sido excedida por los movimientos del sismo.

El riesgo sísmico tiene relación directa con la peligrosidad sísmica y la vulnerabilidad sísmica para que pueda haber verdaderamente riesgo sísmico en un lugar, esos términos tienen que existir. El riesgo sísmico cuantifica y evalúa los efectos

económicos y sociales importantes generados por un sismo, por el producto del fallo de las estructuras.

Los desastres pasados y futuros van a obligar a las instituciones públicas y a la sección privada del mundo a realizar las investigaciones de riesgo sísmico con el objetivo de disminuir los daños producidos por los sismos. Estas investigaciones están elaborándose, tomando en cuenta el desarrollo del país o la peligrosidad sísmica del país.

2.2.15. Peligrosidad Sísmica

Se trata de la posibilidad de que suceda un desastre natural por producto de un sismo, generando consecuencias adversas para los humanos. Estas manifestaciones de la naturaleza aparte del movimiento de terreno, podrían ser, la falla del terreno, la deformación tectónica, la licuación e inundaciones.

2.2.16. Vulnerabilidad Sísmica

Es un valor único, el cual puede clasificar a las estructuras según la calidad estructural de los elementos de la estructura en un rango de menor o mayor medida dependiendo del grado de vulnerabilidad sísmica que tengan, ocasionando un cierto nivel de riesgo sísmico del lugar.

La otra parte principal con el objetivo de evaluar el riesgo sísmico de una zona es la prueba de la vulnerabilidad sísmica de los edificios. La experiencia trae consigo enseñanzas y conocimientos, mediante los sismos sucedidos, existen edificios de un mismo tipo, los cuales pueden pasar por mayor grado de daño debido al sismo, aun así, de estar construidas en una misma zona. Esto hecho se da porque hay estructuras con una capacidad estructural mejor que otras estructuras, es decir, la vulnerabilidad es menor. Por consiguiente, gracias a estos datos se puede concluir que la vulnerabilidad sísmica de unas estructuras, es la capacidad de sus elementos estructurales para poder resistir un sismo.

2.2.17. Vulnerabilidad Del Sistema

El sistema o comunidad está conformado por las instituciones, población civil, infraestructura urbana. Para preparar los planes de mitigación es necesario determinar la vulnerabilidad de sus componentes:

2.2.17.1. Vulnerabilidad Institucional

Es el rol que ejercen las institucionales encargadas, en el desarrollo de la gestión de riesgos, concierne en los siguientes puntos:

- La programación del área, zona, teniendo en cuenta criterios de prevención.
- La inspección del territorio y el cumplimiento de los lineamientos de construcción, que disminuyen la situación de riesgo.
- La construcción de obras necesarias, para disminuir y prever desastres.
- Las juntas de emergencias, la alerta, la observación y la recuperación después de los eventos sísmicos.

2.2.17.2. Vulnerabilidad Social

Es de mucha importancia tener en consideración el rol de desempeño de la vulnerabilidad social en los efectos de fenómenos. Algunos grupos de la comunidad por nivel económico y nivel físico, son muy frágiles a desastres que afectaran su vida cotidiana, trabajo o su producción.

La organización comunitaria contribuye en gran parte a disminuir la vulnerabilidad añadiendo los elementos de información en la enseñanza y sensibilización en temas de riesgo, como, la competencia de respuesta de la comunidad. Igualmente, se debe tomar en cuenta la participación de la gente como un procedimiento útil servirá para el avance de otros tipos de procedimientos como los planes de desarrollo. En este tipo de medidas se juntan todas las ideas que brindan ayuda a reforzar la capacidad de respuesta local, en lenguaje de planificación, inspección, ordenamiento y enseñanza.

- Organización comunitaria: Es la preparación de la organización comunitaria, suministro y ordenamiento de las propias actividades sobre asuntos que tienen que ver con la gestión de riesgos.
- Preparación para la emergencia: Es la adquisición de los sistemas de alerta temprana, practica de los planes de emergencia y simulacros.
- Campañas de información local: Es la enseñanza sobre los riesgos locales y realización de ideas de respuesta.
- Capacitación comunitaria: Es enseñar a la comunidad en la gestión del riesgo, higiene, medio ambiente y el sostenimiento de los sistemas de defensa.

2.2.17.3. Vulnerabilidad Física

Los pasos para reducir la vulnerabilidad física son básicamente las obras de ingeniería: edificaciones, caminos, obras de saneamiento, líneas vitales, etc. Se está considerando funcional en el manejo del plan, repartir y ordenar los proyectos recomendados según su tipo de amenaza que va a disminuir. Los proyectos propuestos son el producto de las sugerencias de pobladores, de visitas de campo efectuados en la demarcación territorial. Igualmente, de obras y programas propuestos se hace inferir en el orden de la utilización de los lineamientos de construcción de las edificaciones, esto se tiene que dirigir como para la disminución de la vulnerabilidad de las edificaciones, también para los servicios, e infraestructuras. El acatamiento de los procesos administrativos, como la aceptación de licencia de construcción, la inspección de los elementos de construcción, procedimientos constructivos y el respeto de la normatividad vigente son fundamentales para alcanzar este objetivo.

2.3. Definición De Términos

2.3.1. Instrumentación Sísmica

Equipo diseñado para medir las aceleraciones del lugar de desplazamiento en función del tiempo, cuando se generan sismos fuertes, además del análisis de efecto de sitio y estructuras (instituto geofísico del Perú).

2.3.2. Sistema De Alerta Temprana

El sistema de alerta temprana es un instrumento que contiene de un grupo de elementos y procesos para la detección de peligros, vigilancias, comunicación de alertas, alarmas (PREDES).

2.3.3. Prevención

Son las acciones planificadas que buscan evitar que se generen nuevos riesgos (ley N° 29664).

2.3.4. Vulnerabilidad

La susceptibilidad de la población, la estructura física o las actividades socioeconómicas de sufrir daños de edad por acción de un peligro o amenaza (Ley N° 29664 del sistema nacional de gestión del riesgo de desastres).

2.3.5. Placas Tectónicas

Se trata de áreas divididas de la litosfera de la Tierra en trozos de áreas, igualmente nombradas placas litosféricas, estas placas son extensas y relativamente rígidas, se mueven con relación a otras placas. Estas interactúan entre ellas mismas, esa zona de interactuación se llama límites de placas, algunas son de tipo convergente, divergente y transformantes. En esta zona es que se producen los sismos. (instituto geofísico del Perú).

2.3.6. Ondas

Consiste en una propagación de energía sin que exista desplazamiento de la materia (Bazo y Tricárico).

2.3.7. Aceleración sísmica

La aceleración sísmica es una medida que se usa en terremotos de manera que se pueda medir de manera directa las aceleraciones que soporta la superficie del suelo, esta medida es de mucha importancia en la ingeniería sísmica, siendo su unidad medida igual que la gravedad, es decir, g=9,81cm/s2. En el campo de la ingeniería, esta aceleración es utilizada para la realización de normas sísmicas, así mismo también los mapas de zonificación. (instituto geofísico del Perú).

2.3.8. Hipocentro

Punto en el interior de la tierra, en el cual se da inicio a la liberación de energía causada por la ruptura y generación de un sismo, este punto indica la ubicación de la fuente sísmica. (instituto geofísico del Perú).

2.3.9. Geofísica

Rama de la ciencia considera la aplicación de las teorías y procedimientos de las ciencias físicas al estudio de la tierra y sus fenómenos (instituto geofísico del Perú).

2.3.10. Límite de placa

Lugar, áreas en donde dos o más placas están en interacción, existen tres límites de placa: limites divergentes, limites convergentes y limites transformantes (instituto geofísico del Perú).

2.3.11. Epicentro

Punto exacto en la superficie terrestre que representa la proyección del hipocentro o foco sísmico (instituto geofísico del Perú).

2.3.12. Sismología

Rama de la geofísica que estudia los sismos y las propiedades elásticas de la tierra (instituto geofísico del Perú).

2.3.13. Estación sismológica

Punto o lugar en donde se tiene operando o funcionando una estación sísmica para el registro de las ondas sísmicas. Un conjunto de estaciones sísmicas constituye una red sismológica, pudiendo ser local cuando las dimensiones del área de monitoreo no son mayores a 200 kilómetros, regional hasta 5000 kilómetros y mundial cuando monitorea todo el globo terráqueo (instituto geofísico del Perú).

2.3.14. Manto

Capa de la tierra que se encuentra entre la corteza y el núcleo exterior de la tierra. Tiene aproximadamente 2900 kilómetros de espesor y es la capa con un volumen que abarca casi el 87% del total de la tierra. El manto se divide en manto superior y manto inferior, ambos diferenciados por presentar diferentes propiedades físicas y químicas (instituto geofísico del Perú).

2.3.15. Núcleo

Corresponde a la parte interna de la tierra y se divide en núcleo interno y núcleo externo. El núcleo interno es sólido y tiene un radio de aproximadamente de 1300 kilómetros. El núcleo externo es fluido y es de aproximadamente 2300 kilómetros de espesor, compuesto principalmente por hierro y níquel (instituto geofísico del Perú).

CAPITULO III: MARCO METODOLÓGICO

3.1. Tipo y Diseño De La Investigación

3.1.1. Tipo De Investigación

El tipo de investigación fue explicativo.

3.1.2. Diseño De La Investigación

El diseño de la investigación fue analítico-integrativo.

3.2. Población y Muestra De Estudios

3.2.1. Población

La población de estudios en este tema de investigación serán los países del cinturón de fuego.

3.2.2. Muestra

La muestra será la instrumentación sísmica de los países del cinturón de fuego.

3.3. Operacionalización De Variables

3.3.1. Variable Independiente

La instrumentación sísmica.

3.3.2. Variable Dependiente

Propuesta de mejora preventiva.

Tabla 5Operacionalización de variables

Variable Definición operad		ón operacional		Dimensión	Indicador			
Instrumentación sísmica.		Equipo diseñado para medir		Calidad de	Tipo de equipos.			
			las acelerac	las aceleraciones del lugar de equipos				
			desplazami	ento en func	ón	Fecha de	Tecnología del ed	quipo
			del tiemp	oo, cuando	se	realización de		
			generan	sismos fuert	es,	equipo.		
			además del	l análisis de efe	cto	Número de	Cantidad de equi	pos
			de sitio y estructuras.		instrumentos			
						sísmicos.		
Propuesta	de	mejora	Conjunto	de medidas	de	Peligro	Alternativas	de
preventiva			cambio que se toman en una		sísmico	prevención		
			organización para mejorar la		Tecnología,	Instrumentos		
			prevención ante un desastre.		tipo y cantidad	sísmicos.		

Nota. Operacionalización de variables hecho por el autor de la presente tesis.

3.4. Técnicas e Instrumentos

3.4.1. Técnicas

Se utilizó la técnica documental en la presente investigación, porque se recolectó la información a través de fuentes documentales que están disponibles en las páginas oficiales de las instituciones encargadas y responsables de administrar las redes sísmicas. Entrevista con especialistas del CISMID-UNI para profundizar y tomar conocimiento de los detalles de las redes sísmicas del Perú, así mismo se tiene a nivel de proyecto implementar más instrumentos sísmicos.

3.4.2. Instrumentos

Se utilizó los siguientes instrumentos para recolecion de informacion y datos:

- Paginas Web.
- Articulos científicos.
- Tesis.

3.5. Procesamiento y Análisis De Datos

Objetivo específico 1

Determinación de la instrumentación sísmica del Perú.

Se recolectó la información oficial de las entidades públicas encargadas de la instrumentación sísmica, así como detallar el tipo y cantidad de equipos usados actualmente.

• Objetivo específico 2

Evaluación del nivel de instrumentación sísmica del Perú frente a los demás países del cinturón de fuego.

Se recolectó información sobre la respectiva instrumentación sísmica de los países del cinturón del pacifico a investigar, detallando el tipo y cantidad de equipos usados actualmente y se procederá a comprar los equipos según los indicadores de la variable independiente.

Objetivo específico 3

Propuesta de alternativas de difusión de alerta sísmica para las instituciones públicas del estado.

Con la instrumentación sísmica de los países del cinturón de fuego del pacifico, algunos sistemas de alerta temprana, herramientas y en cooperación con instituciones públicas y privadas se da a conocer alternativas de difusión de alerta sísmica.

CAPITULO IV: RESULTADOS

En este capítulo se presenta los resultados obtenidos a fin resolver los problemas planteados en la presente investigación.

4.1. Red de acelerógrafos del Perú.

Se ha podido constatar a través de investigaciones, publicaciones y plataformas oficiales de las instituciones que se encargan de administrar redes sísmicas como son el Instituto Geofísico del Perú, la universidad nacional de ingeniería, centro peruano japones de investigaciones sísmicas y mitigación de desastres, servicio nacional de capacitación para la industria de la construcción y el colegio de ingenieros del Perú, asimismo se resalta a otras instituciones que cooperan con la administración descentralizada de redes acelerográficas a nivel nacional.

- La red de Sencico cuenta actualmente con 10 acelerógrafos.
- La red del centro peruano japones de investigaciones sísmicas de mitigación de desastres (CISMID) cuenta actualmente con 76 acelerógrafos.
- La red del Instituto Geofísico del Perú cuenta actualmente con 193 acelerógrafos.
- La Red del colegio de ingenieros del Perú cuenta actualmente 34 acelerógrafos
- En edificios instrumentados tenemos 63 acelerógrafos.

Tabla 6Resumen de acelerógrafos del Perú

N°	de	acelerógrafos		
instalados				
		76		
10				
		34		
		193		
		63		

Nota. Número de instrumentos sísmicos por cada red del Perú.

4.1.1. Red de acelerógrafos del Instituto Geofísico del Perú (IGP).

Las primeras estaciones acelerométricas que estuvieron administradas por el Instituto Geofísico del Perú, comenzaron a realizar sus actividades en los años 40, en el parque de la reserva y en el campus de la universidad de la Molina, pero el primero, de ellos fue el del Parque de la reserva en el año 1944 por el U.S. Coast and Geodetical Survery, con colaboración del Instituto Geofísico del Perú. Pasaron algunos años y en la década de los 80 y 90, la red acelerométrica estuvo integrada por 17 estaciones distribuidas mayormente en la región de Lima, todas con registros en papel fotográfico y/o cintas magnéticas. Así también el Instituto Geofísico del Perú cuenta con la red sísmica nacional que está conformada por 70 estaciones sísmicas.

A principio del año 2014, el Instituto Geofísico del Perú presentó un proyecto al gobierno de turno para la compra de 169 acelerómetros para ser instalados en todo el territorio peruano, para así obtener más información y ganar mayor conocimiento sobre la calidad de suelo en cada ciudad del Perú, por lo tanto, cooperar a la norma sismorresistente E.030. Luego de la aprobación, en los próximos años se estuvieron instalando los acelerómetros principalmente en las capitales de las distintas provincias. Por ejemplo, en Lima metropolitana cuenta con un acelerómetro por distrito. Estos acelerómetros transmiten toda su información al centro sismológico nacional (CENSIS) por radio digital o internet. Todos los acelerómetros están instalados en instituciones educativos a excepción de algunos, que su registro es in situ, los datos obtenidos son recolectados cada tres meses para su respectivo análisis y procesamiento. Los instrumentos que se usa en la red sísmica del instituto geofísico del Perú son los siguientes:

- Sensores de velocidad: Son instrumentos sísmicos elaborados con el objetivo de hacer registro la velocidad del suelo en un rango de frecuencias (desde mili Hertz hasta cientos de segundos). Estos sensores pueden registrar sismos de magnitudes muy pequeñas, que no se sentirían para la población, aunque tienen una desventaja, el cual es su nivel de saturación, que puede ser alcanzado por estaciones aledañas a un sismo de gran magnitud, es por eso que la red sísmica tiene que hacer el uso de instrumentos adicionales, que puedan obtener información de calidad, los datos obtenidos ayudan en el cálculo de los parámetros hipocentrales, la profundidad del foco y su magnitud. Estos instrumentos sísmicos se han instalado por todo el territorio peruano con el objetivo de registrar y monitorear la continua actividad sísmica.
- Sensores GNSS: Son instrumentos sísmicos que se basan en el posicionamiento satelital y pueden medir la posición de cualquier lugar muchas veces por un

segundo, con una pericia que varía por los métodos utilizados, con estos equipos se puede calcular los desplazamientos del terreno es escalas temporal y espacial, recogiendo sus datos y registros de desplazamiento permanente y de movimiento producido por el paso de ondas sísmicas generada por los sismos, una diferencia con los sismómetros, es de que este equipo no posee un nivel de saturación.

 Sensores de aceleración: Estos instrumentos tienen como función registrar la aceleración del suelo en altas frecuencias (cientos de muestras por segundo). La sensibilidad de ellos está por debajo de la sensibilidad de los sismómetros, es por eso que registran movimientos de mayor amplitud es decir los sismos de mayor magnitud.

Tabla 7Red de acelerógrafos por región del IGP

Región	N° de acelerógrafos IGP	Región	N° de acelerógrafos IGP
Tacna	9	San Martin	6
Moquegua	4	Huánuco	4
Arequipa	14	Pasco	2
Ica	10	Junín	8
Lima	60	Huancavelica	1
Ancash	10	Ayacucho	6
La Libertad	7	Apurímac	2
Lambayeque	6	Cusco	10
Piura	13	Puno	6
Tumbes	2	Madre de Dios	1
Cajamarca	4	Ucayali	3
Amazonas	3	Loreto	2

Nota. Red de acelerógrafos del Instituto Geofísico del Perú.

4.1.2. Red de acelerógrafos del CISMID.

El centro peruano- japones de investigaciones sísmicas y mitigación sísmicas y mitigación de desastres, fue creado en el año 1986 por la facultad de ingeniería (FIC) de la universidad nacional de ingeniería (UNI), la creación se dio gracias a la ayuda del gobierno de Japón mediante su agencia de cooperación internacional (JICA).

En sus inicios se realizó la instalación acelerógrafos analógicos RION modelo SM-10B, de procedencia japonesa, una de sus características es de poder registrar 100

muestras de aceleración por segundo y guardar registros cuando el movimiento del suelo sobrepasa el valor de 5 centímetros sobre segundo al cuadrado (cm/s^2) de aceleración, luego se procesaba en un convertidor analógico digital para obtener el registro en forma digital. En el año 2001, poco a poco se fueron renovando equipos por instrumentos sísmicos mejores, como las estaciones acelerográficas digitales Kinemetrics, modelo ETNA, que tenía una mejor característica, la cual era de registrar 200 muestras de aceleración por segundo, este registro es grabado directamente a una memoria, para luego ir obteniendo los resultados de una manera más rápida, estos equipos también cuentan con una antena GPS, que le da poder de ir actualizando, la fecha, hora y coordenadas día tras día y puede funcionar sin energía eléctricas por un periodo de 72 horas.

Tabla 8Red de acelerógrafos por región del CISMID

Región	N° de acelerógrafos IGP	Región	N° de acelerógrafos IGP
Tacna	4	San Martin	1
Moquegua	5	Huánuco	0
Arequipa	4	Pasco	0
Ica	2	Junín	1
Lima	51	Huancavelica	0
Ancash	0	Ayacucho	1
La Libertad	1	Apurímac	0
Lambayeque	1	Cusco	2
Piura	1	Puno	0
Tumbes	0	Madre de Dios	0
Cajamarca	0	Ucayali	1
Amazonas	0	Loreto	1

Nota. Los equipos acelerográficos tienen su codificación por región, se puede ubicar también por las coordenadas Este y Oeste, además se precisa la marca y modelo de los equipos, los detalles se adjuntan en el anexo 2.

4.1.3. Red de acelerógrafos del Colegio de Ingenieros CIP

La red acelerográfica del Colegio de Ingenieros del Perú se puso en funcionamiento a partir de año 2014. Actualmente, esta red tiene 34 acelerógrafos.

Estas herramientas envían su información recolectada de los registros sísmicos digitalizados a un servidor principal, para ser controlados y administrados en tiempo real.

La red acelerográfica sísmica de la unidad de posgrado FIC-UNI se puso en marcha en el año 2013, durante este tiempo se trabajó con equipos acorde a la arquitectura de la marca TRIMBLE REFTEK con registrador modelo 130-SMA y el modelo 130-SMHR, este tipo de instrumento posee una característica principal, que es el uso del protocolo de comunicación ethernet para enviar la información. Igualmente se adquirió acelerógrafos de las marcas kinemetrics y de la marca obsidian en los últimos años.

Tabla 9 *Red de Acelerógrafos por región del CIP*

Región	N° de acelerógrafos IGP	Región	N° de acelerógrafos IGP
Tacna	1	San Martin	2
Moquegua	1	Huánuco	2
Arequipa	3	Pasco	1
Ica	3	Junín	1
Lima	4	Huancavelica	1
Ancash	2	Ayacucho	2
La Libertad	2	Apurímac	1
Lambayeque	1	Cusco	1
Piura	1	Puno	0
Tumbes	1	Madre de Dios	1
Cajamarca	1	Ucayali	1
Amazonas	1	Loreto	0

Nota. Los equipos acelerográficos cuentan con nombre de la estación, se puede ubicar las coordenadas Latitud sur y Longitud oeste, y el suelo en el cual están colocados. Los detalles se adjuntan en el anexo 3.

4.1.4. Red de acelerógrafos de SENCICO

La institución Servicio Nacional de Capacitación Para la Industria de la Construcción tiene una participación continua en la actualización de la norma E.030 de diseño sismorresistente, porque nuestro país posee una alta vulnerabilidad sísmica, por lo cual firma un convenio con la universidad nacional de ingeniería para unirse a la red acelerográfica del CISMID. Por ese acuerdo SENCICO obtiene cinco estaciones

acelerográficas en las ciudades de Trujillo, Piura, Tacna, Lima y Arequipa, dichas estaciones han sido instaladas por el CISMID y luego se instalaron acelerógrafos en las ciudades de Huancayo, Cusco, Ayacucho, Iquitos e Ica.

Tabla 10Red de Acelerógrafos por región de Sencico

Región	Número de Acelerógrafos	Región	Número de Acelerógrafos
Tacna	1	Piura	1
Arequipa	1	Junín	1
Ica	1	Ayacucho	1
Lima	1	Cusco	1
La Libertad	1	Loreto	1

Nota. Estos equipos acelerográficos cuentan con su codificación, su nombre, su coordenada este, oeste, así también su nivel sobre el mar, el suelo en el que están colocados, la marca y modelo. Estos detalles se adjuntan en el anexo 5.

4.1.5. Edificios instrumentados

Los edificios instrumentados tienen al menos un acelerógrafo de acuerdo a las características de dicho edificio según la norma E.030 de diseño sismorresistente. En la historia y la evolución se dirán las características según la norma. La evolución de la norma E.030 fue la siguiente:

- Norma E.030 1970
- Norma E.030 1977
- Norma E.030 1997
- Norma E.030 2003
- Norma E.030 2006
- Norma E.030 2016
- Norma E.030 2018

4.1.5.1. Norma E.030-1970

En este año se ve que las indicaciones de la norma E.030 no eran tan detalladas pues solo decían que edificios debían tener obligatoriamente un instrumento sísmico.

En la sección V-IV 10.20 de disposiciones generales en el punto 20.04 dice: "En edificios públicos o privados con más de 10 000 metros cuadrados de área construida y

más de 15 pisos, se deberá instalar en el piso superior, un acelerógrafo para movimientos fuertes, y en edificios con más de 15 000 metros cuadrados de área construida y más de 20 pisos se deberá instalar dos acelerógrafos para movimientos fuertes, uno en el nivel más bajo del edificio y el otro en el último piso".

4.1.5.2. Norma E.030-1977

En este año se aumenta algunos puntos y detalles sobre que edificios deben tener obligatoriamente un instrumento sísmico ya sea por su área y contenido de pisos.

En la sección 1.27 de la norma E.030 del año 1977 nos daban los requerimientos de un edificio, que tiene que llevar obligatoriamente un acelerógrafo, decían lo siguiente:

- Todo edificio de más de 25 pisos debe adquirir por cuenta propia 2 acelerógrafos, uno se ubicará en el nivel más bajo del edificio y otro a 2/3 de altura del edificio, si es que no hubiera alguna indicación del proyectista.
- Para los edificios que eran categoría A y B en esa época, en casos de que tengan un área techada mayor a los 10 000 metros cuadrados deberá tener 2 acelerógrafos, uno se ubicara en el nivel más bajo y otro a 2/3 de altura del edificio, salvo alguna indicación del proyectista.
- El mantenimiento y servicio para los instrumentos sísmicos tenía que ser provisto y asegurado por el dueño del edificio, guiándose de la aprobación y control de la institución a cargo (instituto geofísico del Perú).
- Para todo edificio mayor de 15 000 metros cuadrados y menor de 25 pisos se tenía que instalar solo un acelerógrafo, en el piso de acuerdo al proyectista.

4.1.5.3. Norma E.030-1997

En esta norma del año 1997, sale consigo las especificaciones técnicas de los instrumentos sísmicos que se debían tener en caso de que tu edificio debería tener obligatoriamente un instrumento sísmico.

En el capítulo VII de la norma E.030 del año 1997 nos menciona, que clase de edificios deben tener equipos sísmicos, la ubicación de los mismos equipos, su respectivo mantenimiento, su disponibilidad de datos y los requisitos para la conformidad de la obra.

Debian tener un equipo sísmico todos los edificios que cumplían:

- Un edificio de más de 20 pisos, construcciones de área acumulada igual o mayor de 10 000 metros cuadrados debían tener al menos dos instrumentos sísmicos.
- En las zonas sísmicas 2 y 3 (de ese tiempo) todo edificio de 25 pisos o mayor con un área igual o mayor de 15 000 metros cuadrados debían tener al menos tres instrumentos sísmicos.
- Los edificios que eran de 15 a 24 pisos de tipo A y B (en ese tiempo), que se encontraban en zonas sísmicas 2 y 3 (de ese tiempo), localizadas en colinas, áreas cercanas a acantilados, fallas geológicas activas se debían instrumentarse con al menos 2 equipos sísmicos.
- De acuerdo a la ubicación, los instrumentos se debían colocar en lugares señalados por el proyectista y se tenía que reservar un instrumento que debía ser ubicado en un campo libre de la influencia del edificio. La ubicación del instrumento se debía ver claramente en los planos de arquitectura y que contara con acceso fácil para el mantenimiento, apropiada iluminación, ventilación, suministro de energía eléctrica y seguridad.
- Sobre el mantenimiento operativo, partes, servicios de los instrumentos y demás componentes debían ser provistos por los dueños del edificio, con el control del instituto geofísico del Perú. Y se añade que la responsabilidad será por 10 años por parte del propietario
- Sobre la disponibilidad de datos, los acelerogramas que se registran en esa estación, luego eran procesados por el instituto geofísico del Perú para luego ser integrados al banco nacional de datos geofísicos. Dicha información debe ser de dominio publico
- Sobre los requisitos de conformidad para la obra se debía presentar un certificado de instalación, el cual era hecho por el instituto geofísico del Perú y de un contrato de servicio de mantenimiento operativo de los instrumentos.

4.1.5.4. Norma E.030-2003

La norma E.030 del año 2003, siguió el mismo patrón de la norma del año 1997, se siguió utilizando y mejorando las especificaciones técnicas, aunque hubo cambios en que edificios debían tener un instrumento sísmico. Es aquí donde se pone más ordenada al separar los puntos en artículos.

En el capítulo VII de la norma E.030 del año 2003 menciona, que edificios debían tener un registrador acelerográfico, la ubicación del registrador, el mantenimiento del

mismo, la disponibilidad de datos y los requisitos para la finalización de obra. Debian tener un instrumento sísmico los edificios que cumplan con:

- Las edificaciones con un área igual o superior de 10 000 metros cuadrados, deben instrumentarse con un registrador acelerográfico triaxial y este mismo debe cumplir con las especificaciones técnicas brindadas por el instituto geofísico del Perú.
- Sobre la ubicación, en este año hubo un detalle más sobre este punto comparándolo con la norma del año 1997, el cual era que ponían ya un mínimo de área para la ubicación del registrador acelerográfico. El Área mínima era de 4 metros cuadrados.
- Sobre el mantenimiento, era igual que la norma E.030 del año 1997.
- Sobre la disponibilidad de datos, era igual que la norma E.030 del año 1997.
- Sobre los requisitos para la finalización de obra, igualmente eran los mismos requisitos que de la norma E.030 del año 1997.

4.1.5.5. Norma E.030-2006

La Norma E.030 del año 2006 tuvo un formato de presentación, el cual se mantiene hasta nuestros tiempos, al igual que la norma del año 2003 sigue manteniendo el capítulo VIII de instrumentación en cinco artículos, los cuales son:

- Los edificios que debían tener un registrador acelerográfico son los que tienen un área igual o superior de 10 000 metros cuadrados y cumpliendo con las especificaciones técnicas del Instituto Geofísico del Perú.
- Sobre la ubicación, tuvo una misma descripción al igual que la norma E.030 del año 2003.
- Sobre el mantenimiento, tuvo la misma descripción que la norma E.030 del año 2003.
- Sobre la disponibilidad de datos, fue la misma descripción que la norma E.030 del año 2003.
- Sobre los requisitos para la finalización de obra, de igual manera fue la misma descripción.

4.1.5.6. Norma E.030-2016

En el año 2016 la norma E.030 toma una forma más ordenada y cambia el capítulo de Instrumentación pasa del capítulo número VIII al capítulo número IX, pasa a

dividirse en cuatro artículos los cuales mencionan sobre el tipo de edificios que deben llevar estaciones acelerométricas, los requisitos para su ubicación, mantenimiento y la disponibilidad de datos y los detalles sobre los edificios a tener un instrumento sísmico.

- Sobre las estaciones acelerométricas deberán tenerla las edificaciones que individualmente o conjunta, tuvieran un área igual o mayor de 10 000 metros cuadrados, instalada a nivel del terreno natural o en la base del edificio, además en edificaciones de más de 20 pisos o en las cuales se usan dispositivos de disipación sísmica o de aislamiento en la base, se pondrá una estación acelerométrica adicional en la base y en la azotea o en el nivel inferior al techo.
- Sobre la ubicación, en la norma del año 2016, ya no nos menciona el área mínima para la ubicación, pero se añade que debe estar alejada de fuentes de ruidos antrópicos, así como la instrumentación se mostrara en los planos de las especialidades de arquitectura, estructuras y las instalaciones.
- Sobre el mantenimiento, se sigue manteniendo la misma descripción igual que las versiones pasadas.
- Sobre la disponibilidad de datos, se mantiene la misma descripción que las versiones pasadas.

4.1.5.7. Norma E.030-2018

La norma E.030 del año 2018 siguió el mismo formato de la versión pasada del año 2016, en los cambios que se vio fue que en el artículo de estaciones acelerométricas se aumentó incisos sobre que edificios deben llevar estaciones acelerométricas. En el que describe que es una estación acelerométrica y las condiciones que debe estar dicho instrumento.

Sobre las estaciones acelerométricas, se pondrá en funcionamiento en los edificios, que individualmente o en forma conjunta tengan un área techada igual o superior de 10 000 metros cuadrados, contaran con el instrumento instalado a nivel del terreno o en la base del edificio. Igualmente, para los edificios con más de 20 pisos o en aquellas edificaciones con dispositivos de disipación o aislamiento en la base, se deberá instalar una estación acelerométrica en la base y otra adicional en la azotea o en el nivel inferior al techo. De acuerdo a las especificaciones técnicas brindadas por el instituto geofísico del Perú.

- Para la ubicación, se tomó las mismas descripciones que la norma E.030 del año 2016.
- Sobre el mantenimiento, se tiene las mismas instrucciones que la norma
 E.030 del año 2016.
- Sobre la disponibilidad de datos, se tiene el mismo artículo que la norma
 E.030 del año 2016.

Tabla 11 *Edificios Instrumentados del Perú*

Región	Distrito de Lima	Número de Edificios Instrumentados
Lima	Barranco	1
Lima	Bellavista	1
Lima	Chorrillos	1
Lima	Jesús María	2
Lima	La Victoria	2
Lima	Lima	4
Lima	Lince	3
Lima	Magdalena	1
Lima	Miraflores	10
Lima	San Borja	5
Lima	San Isidro	30
Lima	San Miguel	1
Lima	Surco	2

Nota. Los instrumentos sísmicos cuentan con su codificación, su ubicación en coordenadas este, oeste y su propietario. Los detalles se pueden ver en el anexo N° 6.

Estos equipos cuentan actualmente funcionando en buen estado solo 19 de 63 es decir solo el 30% registra algún sismo y da reportes hacia las oficinas de procesamiento, mientras que el resto no está cumpliendo su labor, en estos casos se deberá tener en cuenta el mantenimiento no es efectivo o alguna clase percance hubiera ocurrido con el instrumento sísmico.

4.1.6. Sistema de Alerta Temprana de Perú

Después del gran sismo de Pisco en el año 2007, el de Chile en 2010 y los múltiples sismos de gran magnitud de México desde el año 2017 hasta la actualidad, impulsan a nuestro país a obtener un sistema de alerta temprana de sismos. Conjuntamente este proyecto se viene desarrollando conjuntamente con el gobierno central, con el IGP, INDECI, CENEPRED y el ministerio de defensa. En el año 2019 comienzan a ver las primeras reuniones del MEF con el IGP para poder iniciar con los temas del presupuesto y poner el punto de inicio de este proyecto. Luego de varias reuniones en el año 2020 el MEF aprueba el proyecto "Servicio de provisión de información de alerta temprana ante el peligro por sismo para poblaciones de la costa del Perú", en esta primera se etapa se tiene previsto instalar el sistema de alerta temprana (SASPE) en toda la zona de mayor peligro sísmico, la costa.

Razón por la cual de acuerdo al decreto de Urgencia N° 014 – 2019 se asignó al instituto geofísico del Perú un presupuesto para el año 2020 con el objetivo del proyecto, con el monto de S/. 9 187 867 (Nueve millones ciento ochenta y siete mil ochocientos sesenta y siete de soles). Este sistema de alerta temprana tiene previsto también cumplir con lo que ordena la ONU para un sistema de alerta temprana:

- Conocer el peligro: Esto va de parte del IGP, y tiene como herramientas todos sus estudios y aportes a la investigación.
- Instrumentar para generar información: La información se da gracias a los resultados de los instrumentos sísmicos que trabajan en su punto de instalación.
- Difusión de la alerta: Esta parte es responsabilidad INDECI, en colaboración con algún ministerio de defensa o de transporte y comunicaciones. Se plantea usar mediante el uso de bocinas.
- Preparación de la población: Esta parte es de responsabilidad por INDECI. Se tiene que hacer simulacros una vez instalado este sistema.

4.1.6.1. Estaciones del SASPE

Actualmente se están instalando 106 las estaciones que conforman este sistema, se está aprovechando los faros en la costa peruana para la instalación estos equipos, nos ayudan a dar la lectura y dar la alerta de que se viene las ondas sísmicas, se usa lo acelerómetros porque ante sismos de mayor magnitud, estos no se saturan a cambio de los sismógrafos que sufren esta saturación. La primera estación de este sistema, se instaló el 24 de julio del 2020 en Chorrillos. Se está proyectando para el primer trimestre del año 2022 comenzar con los primeros simulacros.

Tabla 12Estaciones del SASPE por región del Perú

Pogión	Número de Región		Número de
Región	estaciones	Region	estaciones
Tacna	6	Ancash	12
Moquegua	4	Lambayeque	9
Arequipa	24	La Libertad	4
Ica	15	Piura	11
Lima	17	Tumbes	4

Nota. Los instrumentos sísmicos cuentan con el nombre, tipo y la ubicación de latitud y longitud. Para mayor detalle observar el anexo N° 7.

4.2. Servicio Sismológico Nacional de México

En abril del año 1904 se realizó una reunión en Francia, que agrupo a 18 países entre ellos México, con el objetivo de generar la Asociación sismológica internacional para progresar con los instrumentos sísmicos en el mundo.

México inaugura su primera estación sismológica, un 5 de septiembre de 1910 en Tacubaya. Pasaron los años y entre el periodo de los años 1910 y 1923, México instaló 9 estaciones sismológicas mecánicas. Las estaciones tenían sismógrafos de marca alemana Wiechert.

Tabla 13 *Red sísmicas de México*

Red sísmica	N° de observatorios	
Red de banda ancha	61	
Red del valle de México	30	
Red del Tacaná	3	
Red de CTBT	3	

Nota. Redes sísmicas de México conformado por observatorios.

La tabla 13 representa la cantidad de observatorios de la red sísmica de México, las misma que se encuentran distribuidas en red de banda ancha, red del valle de México, red del Tacaná y red del CTBTO. Los detalles importantes en el anexos número 8 y 9.

Figura 20 Ubicación de las primeras estaciones de México

Nota. Ubicaciones de las primeras estaciones sísmicas de México en el periodo 1910 y 1923.

En el año 1929 se tuvieron reuniones entre el servicio sismológico nacional de México y representantes de la universidad nacional Autónoma de México (UNAM), para tener un acuerdo donde el servicio sismológico nacional de México pasaba a ser parte de UNAM, luego de algunos en el año 1948 quedaría adscrito al instituto de geofísica de la misma universidad, según expertos el SSN poseía los instrumentos sísmicos más modernos y tecnológicas de la época, pero por los años de 1960, se comienza la instalación de sismógrafos electromagnéticos, llegando a aumentar a 20 instrumentos sísmicos.

Tabla 14 Sismos sucedidos en México

	Total				Magnitud			
Año	de							
	sismos	0 – 2,9	3 – 3,9	4 – 4,9	5 – 5,9	6 – 6,9	7 – 7,9	8 – 8,9
1990	796	12	247	510	24	2	0	0
1991	728	2	183	509	29	1	0	0
1992	614	4	184	398	27	0	0	0
1993	916	47	274	548	40	5	1	0
1994	622	20	192	383	24	3	0	0
1995	678	17	188	438	26	6	2	1
1996	789	8	203	543	32	2	1	0
1997	1019	44	388	533	34	6	1	0
1998	1024	11	453	532	21	5	0	0
1999	1099	12	542	527	11	4	2	0
2000	1052	28	463	531	18	2	1	0
2001	1344	8	704	585	32	6	0	0
2002	1689	4	880	761	40	4	0	0
2003	1323	5	728	568	18	3	1	0
2004	1347	2	670	639	33	3	0	0
2005	1210	1	678	514	17	0	0	0
2006	1356	0	792	544	19	1	0	0
2007	1528	1	728	764	33	2	0	0
2008	1958	7	1154	780	15	2	0	0
2009	2301	5	1648	610	37	1	0	0
2010	3462	23	2454	954	27	3	1	0
2011	4272	44	3357	839	27	5	0	0
2012	5244	21	4106	1054	50	10	2	0
2013	5361	57	4221	1046	33	4	0	0
2014	7610	238	6366	955	42	7	1	0
2015	10947	251	9057	1605	30	3	0	0
2016	15547	557	13501	1453	29	7	0	0
2017	26564	470	21628	4383	79	2	1	1
2018	30407	1584	25657	3122	41	2	1	0
2019	26444	308	23004	3087	43	2	0	0
2020	30130	309	26756	3029	33	2	1	0
2021	19038	357	16945	1711	24	0	1	0

Nota. Número de sismos sucedidos y registrado en México.

4.2.1. Red de Banda Ancha

Esta red de banda ancha del servicio sismológico nacional se encuentra repartida por todo el territorio mexicano, con el objetivo del monitoreo continuo de los sismos, está conformado por 61 observatorios sismológicos, cada uno posee un sismómetro y un acelerómetro, los cuales captan la información y la registran sobre el fenómeno sísmico, también cuentan con 43 sistemas GNSS para el control de desplazamiento, estos observatorios tienen los siguientes instrumentos sísmicos:

 Sismómetro, un sensor de velocidad: este sensor puede recolectar las ondas sísmicas recibidas en una banda de frecuencias, con respuesta a la velocidad del suelo que varía entre 0,01 a 30 Hz.

Figura 21
Sismómetro de un observatorio de México

Nota. Sismómetro elemento de un observatorio de México.

 Acelerómetro: este sensor triaxial registra las aceleraciones del suelo, en un amplio espectro de frecuencias sin saturarse para sismos grandes, con sus características pueden calcular con mucha mayor pericia la magnitud de sismo grandes.

Figura 22Acelerómetro de un observatorio de México

Nota. Acelerómetro, elemento de un observatorio de México.

 Sistema global de navegación por Satélite, GNSS: este equipo puede proporcionar la localización espacial y temporal (desplazamiento) por medio de radio señales de diversas constelaciones satelitales en los receptores, a través de antenas de alta precisión.

Figura 23
Receptor GNSS del observatorio

Nota. Receptor GNSS, elemento de un observatorio de México.

Digitalizador: una parte del proceso para la conversión analógica y digital se procesa mediante los digitalizadores, los cuales pueden procesan digitalmente para luego guardar datos en otro dispositivo aparte.

Figura 24 *Digitalizador del observatorio*

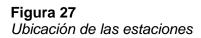
Nota. Digitalizador, elemento de un observatorio de México.

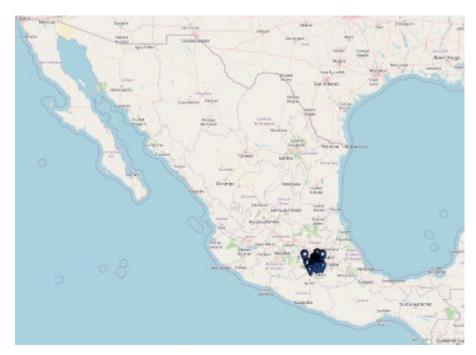
Figura 25 Ubicación de las estaciones

Nota. Estas estaciones cuentan con nombre, en qué estado de México se encuentran, así como la ubicación de latitud y longitud para mayor detalle ver el Anexo N° 8.

Figura 26 Estación de Irapuato

Nota. Estación de Irapuato perteneciente a la red de Banda Ancha


4.2.2. Red Del Valle De México


Esta red sismológica se encuentra situada en el interior de la cuenca de México, la cual se forma por dos redes, una es la red del Valle de México, que posee 14 estaciones que se ubican en el estado de México y en la ciudad de México, la otra red es la red delegacional, que tiene unas 16 estaciones, estas estaciones se ubican una en cada una de las alcaldías de la ciudad de México.

Esta red del valle de México empezó a poner en marcha por el año 2007 con equipos digitales, con sismómetros de banda ancha con respuesta de 30 segundos, estas estaciones son unas pequeñas casetas sobre un pilar de concreto y con paredes de doble tabique, todas tienen telemetría, empleando radios inalámbricos, líneas de internet. Los instrumentos sísmicos con algún digitalizador integrado se usa baterías y también paneleres solares, en lugares los cuales no se encuentra energía eléctrica.

La red delegacional se empezó a ejecutarse por el año 2010, con el mismo principio de construcción que la red del Valle de México, solo que en cada alcaldía. Posee equipos de sismómetros con respuesta de 60 segundos y digitalizador de seis canales, en el año 2015 se adquirieron sensores de aceleración para cada estación. Ambas redes tienen batería y un almacenamiento independiente de transmisión de

datos, por si ocurriera un colapso eléctrico, esta información sísmica serán grabados en sus memorias.

Nota. Estas estaciones cuentan con nombre, en qué estado de México se encuentran, así como la ubicación de latitud y longitud para mayor detalle ver el Anexo N° 9.

Figura 28 Estación de Atizapán

Nota. Estación de Atizapán, perteneciente a la red de Valle.

4.2.3. Red sísmica del Tacaná

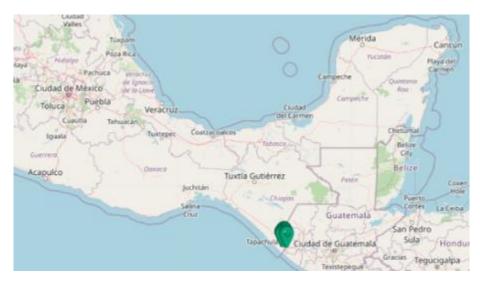

La red sísmica del Tacaná se encuentra conformada por tres estaciones, cada una posee sensores triaxiales, los cuales pueden registrar ondas sísmicas en una muy grande banda de frecuencias, sus señales del sensor de velocidad son siempre muestreadas en forma continua a 100 muestras por segundo. La información recibida por las estaciones se transmite por radio frecuencia a un observatorio sismológico de Tapachula, por consiguiente, son transmitidas mediante un enlace satelital, todas estaciones poseen un reloj GPS, el cual puede generar una referencia de tiempo con precisión.

Tabla 15Estaciones de la Red Tacaná

Código	Nombre	Estado	Latitud	Longitud
CHIQ	Chiquihuite	Chiapas	15,09	-92,10
PATR	Patria	Chiapas	15,11	-92,23
PAVE	Pavencul	Chiapas	15,19	-92,17

Nota. Estaciones de la Red Tacaná conformada por 3 estaciones.

Figura 29 Ubicación de estaciones

Nota. Ubicaciones de las estaciones de red del Tacaná.

Figura 30 Estación de Chiapas

Nota. La Estación de Chiapas de la red del Tacaná

4.2.4. Red de CTBTO

La comisión preparatoria para la organización del tratado de prohibición completa de ensayos nucleares (CTBTO) es un organismo que tiene encargado vigilar el funcionamiento del tratado para la prohibición completa de ensayos (TPCEN). La organización se creó el 19 de noviembre de 1996.

México firmo el TPCEN un día de 24 setiembre de 1996, fue el país número 51 en ratificar el tratado un 5 de octubre de 1999. Con esto México tuvo el compromiso de instalar una pequeña red de estaciones hidroacústicas. Esta red se encuentra localizada en isla Socorro, del océano pacifico a 700 kilómetros de Manzanillo, la cual es operada por el SSN. Esta red consta de 3 estaciones hidroacústicas (sísmicas) puestas en el sur, este y norte de la isla socorro, de las cuales, 2 estaciones poseen un sismómetro de velocidad triaxial de banda ancha. La estación restante cuenta con tres sismómetros uniaxiales de periodo corto. Estas estaciones poseen un sistema de obtención de datos con el poder de digitalizar y enviar la información sísmica mediante de enlaces satelitales al centro de monitoreo del SSN.

Tabla 16Estaciones de la Red CTBTO

Código	Nombre	Estado	Latitud	Longitud
	Isla Socorro			
H06E	Este Pista	Colima	18,78	-110,92
	aérea			
	Isla Socorro			
H06N	Norte Playa	Colima	18,86	-110,98
	Norte			
LIOCC	Isla Socorro	Colima	40.72	110.05
H06S	Sur El barquito	Colima	18,73	-110,95

Nota. Estaciones de la red CTBTO formada por 3 estaciones.

Figura 31 Ubicación de la red

Nota. Ubicaciones de la red de CTBTO

Figura 32 Estación de Isla Socorro

Nota. Estación de la isla Socorro de la red de CTBTO

4.2.5. Sistema de alerta temprana de México

El sistema de alerta sísmica de México emite alertas, comunicación, avisos en el valle de México, esta alerta sucede cuando un grupo de estaciones sensorias, ubicadas en toda la costa de Guerrero, detectan, registran y aseguran el suceso de un sismo de gran magnitud por toda la zona de los sensores. La funcionalidad de este sistema son las velocidades de onda tanto sísmicas como las ondas de radio, estas últimas son las que transmiten la alerta, mientras más rápido sean las ondas de radio a las ondas sísmicas habrá mayor tiempo de aviso. Este aviso temprano del comienzo del sismo es de aproximadamente de 60 segundos.

Este sistema cumple con los 4 componentes, que nos da la organización de las naciones unidas, los cuales son:

- Conocimiento del riesgo: Identificación de riesgos relacionados a fenómenos perturbadores.
- Sistema de monitoreo y alerta: Se utilizan instrumentos sísmicos para la recolección de datos y realizar pronósticos.
- Difusión y comunicación: Con los datos precisos, se procede a avisar a la población sobre el fenómeno.
- Capacidad de respuesta: Después de la alerta se sigue son planes de evacuación, los simulacros son importantes.

Este equipo tecnológico ayuda mucho en la prevención usando subsistemas, algoritmos de detección y alertamiento. Este sistema empezó a funcionar en el año 1991, es por eso que es reconocida como la primera alerta sísmica en el mundo y la pionera en el desarrollo de prevención de sismos. Las alertas, avisos de este sistema son de tipo pública y gratuita en ciudades de riesgo sísmico.

Tabla 17Sistemas de México

Sistema	Fenómeno	Inicio	Aviso
Servicio Sismológico	Sismos	1910	Aviso de sismo
Nacional	01311103	1310	Aviso de sismo
Sistema de alerta			Segundos antes del sismo,
sísmica mexicano	Sismos	1991	tiempo depende de la cercanía
(SASMEX)			del sismo.
Sistema de Alerta			
temprana para ciclones	Ciclón	2000	Con 72 horas de anticipación
tropicales			
Sistema Nasional de			Para tsunamis locales son
Sistema Nacional de	Tsunami	2013	minutos antes y regionales y
alerta de tsunamis			lejanos son horas
Sistema de alerta	la con dico		
temprana de Incendios	Incendios	1999	Si sucediera algún incendio
en México	Forestales		
Servicio Meteorológico	Problemas	4077	
Nacional	Meteorológicos	1877	Aviso de pronósticos
Sistema de monitoreo	Valataiaa	4004	Si sucede algún evento
del Volcán Popocatépetl	Volcánico	1994	volcánico

Nota. Sistemas en prevención de desastres de la ciudad de México

A partir del año 2012 el SASMEX posee 97 sensores sísmicos, en la región que posee el mayor peligro sísmico, la costa que colinda con el océano Pacifico en el interior de la zona de subducción de la placa de Cocos y la placa norteamericana, en los estados de Jalisco, Colima, Michoacán Guerrero, Oaxaca y Puebla. Esta herramienta dispone de sistemas de ingeniería eléctrica, electrónica, computación y comunicación que son confiables. Hasta el momento este sistema ha detectado más de 9780 sismos y ha producido 21 447 registros de aceleración.

Las ciudades que reciben este aviso de alerta son: ciudad de México, Puebla, Acapulco, Chilpancingo, Morelia, Oaxaca, y Toluca y son beneficiados alrededor de 25 millones de personas.

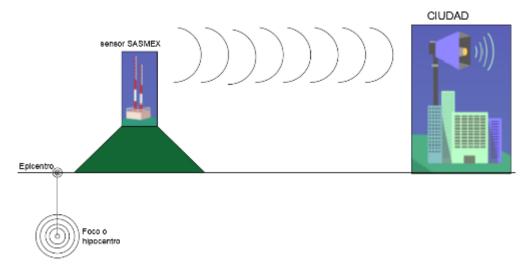
En el año 2019, con los desarrollos tecnológicos continuos por parte de los responsables de estos instrumentos, se llegó al nivel de reducir en 1,2 segundos el tiempo de alerta, en los medios de comunicación que se usa actualmente como la radio, televisión y los receptores dedicados. SASMEX está utilizando fuentes de energía

autónomas, así como aprovechando la energía solar, igualmente está en la busca de elementos alternos y redundantes en los sistemas de comunicaciones.

Figura 33 Elementos del SASMEX

Nota. Elementos del sistema de alerta temprana de México.

Figura 34 Servicio técnico al SASMEX

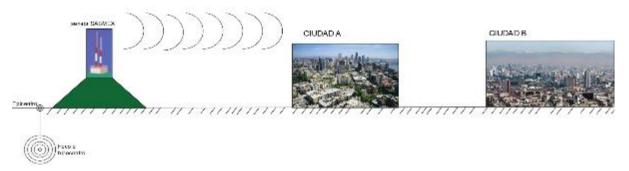

Nota. Elementos del sistema de alerta temprana de México.

4.2.5.1. Criterios del SASMEX

Los sensores del SASMEX vigilan y revisan las zonas con más peligro sísmico y se dan cuenta de un sismo en un radio de 90 kilómetros. Se estimará los primeros segundos de la detección del sismo, posiblemente la cantidad de su magnitud. Con la información obtenida de los sensores, se determina a cada ciudad la distancia del sismo próximo y poder escoger, la difusión del aviso de alerta. Para las ciudades la alerta se activará.

- En caso de que los primeros segundos del sismo, al menos 2 estaciones rebasan los niveles de energía.
- En caso de que de la estimación de la energía del sismo sea muy grande.
- En caso de que la magnitud y la distancia estimada:
 - Magnitud mayor a 5 y suceda a no más de 250 kilómetros.
 - Magnitud mayor a 6 y suceda a no más de 350 kilómetros.
 - Magnitud mayor a 5.5 y suceda a no más de 350 kilómetros.

Figura 35 Ejemplo del SASMEX



Nota. Ejemplo del funcionamiento de SASMEX.

4.2.5.2. Tiempo de Alerta

El tiempo en el cual se escucha el sonido oficial de la alerta por medio de bocinas, hasta que el sismo alcance a las ciudades que se afectaran es en promedio de 20 hasta 120 segundos. Este tiempo de anticipando el sismo varía por el sitio en el cual inicie el sismo y las ciudades cercanas a ello.

Figura 36 SASMEX con ciudades diferentes

Nota. El uso de SASMEX en diferentes ciudades.

Como por ejemplo en la anterior imagen, al estar más alejada del epicentro del sismo la ciudad B, tendrá mucho más tiempo de anticipación por la llamada de alerta del SASMEX, que la ciudad A.

4.2.5.3. Sonido de la Alerta Sísmica

Este sonido característico de la alerta de SASMEX, se realizó en el año 1993, en ese año el sistema se convirtió en un servicio público, los realizadores buscaban que el sonido fuera propio, único y que no se confundiera con otros sonidos. La duración de la alerta es de un minuto en la ciudad de México, desde que se inicia la alerta. Razón por la cual, en este país se viene haciendo simulacros desde el nivel básico, para que los niños reconozcan los sonidos de la alerta. Este sonido paso a ser de uso restringido según la normativa de la ciudad de México, la utilización indebida será sancionado según el artículo 25, fracción IX, de la ley de la cultura cívica de la ciudad de México.

4.2.5.4. Sobre la Transmisión de la Alerta Sísmica

En el año 1993 la alerta sísmica se difundía mediante el uso de estaciones de radio, así como en la televisión abierta en la ciudad de México. La alerta se recibe en el sistema de transporte colectivo Metro, siendo el primer usuario de este progreso tecnológico, es difundida mediante receptores multi alerta EAS-SAME en las escuelas de educación básica.

A partir del año 2008 la alerta se transmite mediante radios con un protocolo multi alerta EAS-SAME (Emergency Alert System – Specific Area Message Encoding) como utilizan varios países en los diversos continentes, pero estos avisos tenían

retrasos y no transmitían los mensajes con anticipación es por eso que el país de México empieza a utilizar un estándar para no tener estos retrasos, en lo que se llamó estándar SARMEX.

El día 19 de setiembre del año 2015, el sonido del aviso de la alerta sísmica, se escucha por las personas, mediante el uso de autoparlantes de la ciudad de México.

En estos tiempos donde las redes sociales pueden brindar información, así como agilizar la comunicación, se vio viable transmitir este tipo de alerta mediante las redes sociales pero hubo objeciones, problemas de las mismas redes sociales, porque esta alerta tiene que dar a la población el mayor tiempo posible antes de la llegada de un sismo, es por eso que las redes sociales (Facebook, WhatsApp, Instagram, Twitter, etc) son usado mediante internet y de vez en cuando sufren interrupciones, retardos hasta suspensión en algún servicio, por estas desventajas hacen poco confiables para ser un medio de comunicación para la alerta sísmica. Igualmente se intentó el uso de aplicaciones móviles en los celulares como un medio de aviso para la alerta sísmica, pero, así como las redes sociales también dependen de internet, esto produce algún tipo de retraso que podría variar de acuerdo a la estabilidad de la red. Surgió una opción viable para aprovechar el uso del celular en estos tiempos, mediante la tecnología "CellBroadcast", esta tecnología puede enviar de manera simultánea mensajes de alerta a los usuarios de un teléfono móvil conectados a una célula que se ubica en una zona que deba ser alertada y no es necesario del internet es decir sin la instalación de aplicaciones móviles.

4.3. Centro Sismológico Nacional de Chile

El centro sismológico nacional de Chile de la facultad de ciencias físicas y matemáticas de la universidad de Chile, es el ente oficial encargado de la supervisión de la actividad sísmica en todo el territorio chileno. Después del gran sismo de 1906, razón por la cual Pedro Montt, dio el visto bueno, a la creación de esta institución. Se realizo la creación del servicio sismológico, un día 1 mayo del año 1908. Pasaron los meses y en el cerro Santa Lucia, se realizó la instalación de la primera estación sismológica, luego procedió a instalar las ciudades de Punta arenas, Osorno, Copiapó y Tacna continuando con el plan se instalaron otras 29 estaciones de menor complejidad.

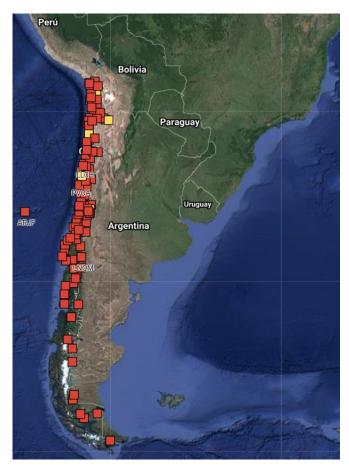
Después del gran sismo del 21 de abril de 2007 en Chile, el gobierno chileno se vio necesario con la obtención raudamente de algún plan de alerta y emergencia sobre casos de terremotos y/o tsunamis. Por eso que el gobierno chileno acordó un plan con la facultad de ciencias físicas y matemáticas de la universidad de Chile, para realizar el

diseño, implementación y la operación de una red sismológica que estuviera por completo en el territorio nacional. Pasaron los años y el 27 de febrero del año 2010, el sismo de magnitud 8,8 afecto a la región del centro y sur de Chile, esto evidencio que el proyecto anteriormente mencionado, no mostraba los avances esperados. En el año 2013 se activó el centro sismológico nacional de Chile, el día 28 de diciembre del año 2012, se realiza el acuerdo entre la universidad de Chile y la oficina nacional de emergencia.

La red sismológica nacional de Chile, está conformada por estacione sismológicas multiparamétricas situadas a lo largo de todo el territorio chileno, trata de un plan comunicaciones con el objetivo de llevar datos hasta los equipos principales y una herramienta de adquisición, archivo, registro, análisis y repartición de datos. Se denomina estación paramétrica ya que posee los siguientes instrumentos sísmicos:

- Sismógrafos de Banda ancha
- Acelerógrafos
- Instrumentos GNSS

Tabla 18 Redes del CSN


Red	Numero de instrumentos
	sísmicos
Red de GNSS	124
Red de Sismógrafos	109
Red de Acelerógrafos	94

Nota. Redes del CSN de Chile

4.3.1. Red De GPS

Los receptores GNSS (GPS), son equipos que se basan en el posicionamiento satelital. Miden la posición de un lugar muchas veces por un segundo con pericia, variando entre milímetros o centímetros dependiendo del método a usarse. Estos instrumentos generan directamente el desplazamiento, en cambio los sismómetros o acelerógrafos tienen que hacer otros procesos para obtener estos desplazamientos. Los instrumentos GPS son necesarios para estudiar los procedimientos y distribución espacial de la rotura de sismos de gran magnitud, razón por la cual es un complemento muy útil para el estudio sismológico. Las primeras estaciones de este tipo de posicionamiento satelital de la red chilena, se comenzaron a instalarse en los años 90.

Figura 37 Red de GPS de Chile


Nota. Estas estaciones cuentan con nombre, su fecha de instalación, el tipo de receptor y la institución responsable para mayor detalle ver el Anexo N° 10.

Figura 38 GPS de Isla Mocha

Nota. GPS de isla mocha del CSN

Figura 39 GPS de Taltal del CSN

Nota. GPS de taltal del CSN

4.3.2. Red de Sismógrafos

Estos equipos tienen el objetivo de medir la velocidad del suelo en parámetros de frecuencias (desde mili-Hertz hasta algunos cientos segundos). Estos instrumentos son sensibles en el sentido decir que miden sismos muy pequeños para estudiar la

distribución y evolución espacio-temporal de la sismicidad, con esta característica anterior tiene una desventaja, la cual es que poseen un nivel de saturación muy alto, es decir se saturan con sismos de gran magnitud.

Figura 40 Red de sismógrafos de Chile

Nota. Estas estaciones cuentan con su digitalizador, marca y modelo para mayor detalle ver el Anexo N° 11.

4.3.3. Red De Acelerógrafos

Estos instrumentos sísmicos están diseñados para medir la aceleración del suelo en altas frecuencias hasta en cientos de ejemplares por un segundo, la sensibilidad de estos equipos es muy por debajo de los sismómetros, razón por la cual registrar movimientos de sismos de gran magnitud.

Figura 41 Red de acelerógrafos de Chile

Nota. Estas estaciones cuentan con su digitalizador, marca y modelo para mayor detalle ver el Anexo N° 12.

4.3.4. Sistema Alerta Temprana de Chile

Chile no tiene oficialmente operativo algún sistema de alerta temprana de sismos, (cuentan con un sistema de aviso de tsunamis), están en pruebas, instalación, aun recolectando información para su funcionalidad, el CSN se encontraba realizando pruebas de softwares (G-Fast en la actualidad opera en Estados de Oregón y Washington) y usando los instrumentos de tipo GNSS (GPS), este analiza los datos de deformación del suelo generado en tiempo real, a diferencia de otro sistemas que usan los acelerógrafos. El "Proyecto de Observación Submarina de Terremotos, reciente de Chile relacionado a este sistema, en agosto del 2021 se van iniciado las gestiones para las pruebas, con el fin de utilizar cables de fibra óptica submarina Prat de GTD, como si fueran equipos de detección de sismos, puestos en el fondo marino, usando la técnica de detección acústica distribuida. Esta técnica ayudara mucho al país chileno, ya que, para sismos con epicentro en el fondo marino, sus ondas solo pueden ser detectadas una vez cuando lleguen a suelo firme así teniendo un menor tiempo de aviso en caso del sistema de alerta, o si se tuviera alguna estación en el fondo marino (como Japón),

en cambio sí detectamos sismos de ese tipo, podemos dar aviso apenas ocurra el inicio del sismo.

4.3.5. Sistema de Alerta de Emergencias

Este sistema da a conocer emisiones de alertas de emergencia a sus usuarios en una zona determinada mediante mensajes de texto. No es una aplicación móvil, es un sistema que se unen mediante un envío de mensajes y poniendo códigos de acuerdo a tu equipo y listo. Estos mensajes son enviados por un canal de frecuencia reservado razón por la cual no habrá una saturación de llamadas. Este sistema tuvo un gasto de aproximadamente de 4,5 millones de dólares y la responsable de todo esto es la Subsecretaria de Telecomunicaciones de Chile así también las empresas de telefonía de Chile como Claro, Entel y Movistar, para que el usuario no tenga algún costo extra por los mensajes recibidos. Sin embargo, este sistema es solo compatibles con algunos equipos que cumplen con algunas de las características dadas, pero para el año 2017 el gobierno chileno decreto que todos los equipos comercializados en ese país deberían ser compatibles con este sistema, en cada equipo vendido vendrá con un sello indicando que es compatible con el sistema.

4.4. Instituto Geofísico de la Escuela Politécnica Nacional de Ecuador

En el país de Ecuador el principal centro encargado de monitorear los eventos sísmicos es el instituto geofísico de la escuela politécnica nacional de Ecuador, pero desde el año 2003 cuando el gobierno central de Ecuador dar el rol oficial de diagnóstico y vigilancia de los sismos en Ecuador. El país norteño tuvo su primera instalación de instrumento sísmicos a finales de la década de los años 70, estos equipos fueron sismógrafos de periodo corto de una componente.

Tabla 19Instrumentos sísmicos de Ecuador

65
77
52

Nota. Redes sísmicas usadas en ecuador con la cantidad de instrumentos usados.

4.4.1. Red Nacional de Sismógrafos

En los años siguientes 80 y 90 se fue modernizando con equipos de tres componentes de periodo corto. Sin embargo, estas primeras estaciones fueron instaladas para evaluar la actividad de los volcanes, es hasta los años 90 que empiezan a instalarse algunas estaciones en la zona costera. Estos instrumentos cuentan con su codificación, la red y modelo del sensor para mayor detalle ver el Anexo N° 13.

4.4.2. Red Nacional de Acelerógrafos

El primer acelerómetro de Ecuador se instaló por parte de la escuela politécnica nacional de Ecuador, de ahí en adelante se tuvo varios proyectos con fin de adquirir muchos más instrumentos de este tipo para su evaluación de los eventos sísmicos, como el proyecto de FEIREP e IRD, el proyecto en el periodo 2008 a 2012 de "Fortalecimiento del Instituto Geofísico Ampliación y Modernización del Servicio Nacional de Sismología y Vulcanología" o algún tipo de convenio como el del año 2014 el IGEPN y el OCP para la ampliación y mejoramiento de la evaluación sísmica. Estos instrumentos sísmicos tienen su ubicación y marca, para mayor detalle ver en el anexo N°14 y N° 15.

4.4.3. Red Nacional de Geodesia

Esta red comenzó a funcionar en el año 2006, con estaciones instaladas en zonas cercas a volcanes activos, pasaron los años y en el año 2008 se empezó la instalación de estos equipos en las regiones costeras. Estos instrumentos poseen su código y ubicación de latitud y longitud, se verán en mayor detalle en el Anexo N° 16.

4.4.4. Red de Repetidoras

Repet la red de repetidoras de Ecuador, tiene como función de la transmisión de datos desde todas las estaciones hasta los centros de interpretación de datos. Dentro de esta red están las siguientes subredes:

 Transmisión analógica: Este tipo de transmisión es usada por estaciones sísmicas de periodo corto con 48 enlaces y 47 puntos de repetición de todo el país.

- Transmisión digital: Se usa para las estaciones de banda ancha, estaciones geodésicas, con 26 enlaces y 9 puntos de repetición.
- Transmisión Satelital: Este tipo de transmisión se usa en estaciones de banda ancha, se usa en zonas de clima muy desventajosos.
- Transmisión por micro-ondas: Es una red troncal de transmisión ubicada en la sierra central, tiene 7 enlaces y 9 repeticiones.
- Red de comunicaciones (voz): Esta red es digital de cobertura de voz con solo tres estaciones repetidoras.

4.4.5. Redes de Transmisión

Para no tener la oportunidad de perdida de algún tipo de información sobre sismos, Ecuador ha variado su tipo de transmisión de datos para obtener mayor seguridad a la hora de pasar información a sus centros de procesamientos, entre estos tipos tenemos:

- Transmisión por fibra óptica.
- Transmisión por la red central de Microondas.
- Transmisión por la red satelital.
- Transmisión por la tecnología Spread Spectrum.
- Transmisión por WIFI de largo alcance.
- Transmisión analógica en UHF.
- Transmisión por internet.
- Transmisión de voz.

4.4.6. Sistema Alerta Temprana de Ecuador

Ecuador trabaja con 3 proyectos, dos de ellos con agencia Jica de Japón y el proyecto restante se está viendo con instituciones del Estado, en el año 2015 hubo reuniones con representantes de Japón, ambas partes definieron básicamente de mejorar su ente oficial en la capacidad de monitorear y administrar datos, también mejorar sus redes sísmicas.

4.5. Agencia Meteorológica de Japón

Esta institución está encargada de las redes sísmicas nacionales del país de Japón, el servicio de esta institución comenzó en 1875, de ahí fue cambiando de muchos

nombres y con colaboraciones de algunas otras instituciones, empezaron a comenzar a iniciar las observaciones de movimiento sísmico en el año 1884.

AMJ tiene una red de observación que cuenta con 624 instrumentos sísmicos aparte existen otros tipos de redes como:

Tabla 20 *Redes de Japón*

Red	Número de instrumentos
Agencia Meteorológica de	624
Japón	024
Gobierno Local	2912
NIED	777

Nota. Redes de Japón, con la cantidad de instrumentos sísmicos que poseen, NIED tiene como significado Instituto Nacional de Investigación para las ciencias de la tierra y la prevención de desastres.

4.5.1. NIED

Se creo en abril del año 1963, como un instituto nacional bajo la jurisdicción de la agencia de ciencia y tecnología. Tiene abreviatura como NIED por en inglés "National Research Institute for Earth Science and Disaster Resilience", se llama Instituto Nacional de Investigación para Ciencias de la Tierra y Prevención de Desastres, este instituto tiene un campo muy abierto hacia el desarrollo tecnológico para la prevención de desastres, la predicción, la respuesta y la recuperación de la población frente a los desastres. En abril de 1997 se crea sus principales sub redes sísmicas como son: red sísmica Hi-net, Kik-net, y F-net, luego de año en abril del 2010 se crea la red observación de volcanes V-net y en agosto del 2011 se tuvo la creación de una importante de terremotos submarinos S-Net. En noviembre del 2017 se inició la operación red integrada de observación de volcanes, sismos terrestres y marinos (MOWLAS).

4.5.1.1. MOWLAS


Monitoring of Waves on Land and Seafloor o su traducción al español monitoreo de ondas en tierra y en el fondo marino. Después del gran terremoto de Kobe en 1995 se inicia un proyecto de creación de las redes Hi-net, K-net, Kik-net y F-net. Así también del sismo de Tohoku del 2011, se crea la observación del fondo marino. Para luego la

iniciar la operación integrada de estas redes empezó oficialmente en noviembre del 2017 y estas redes se llamaron colectivamente MOWLAS.

- Hi-net: Esta red consta de 800 estaciones de sismógrafos de alta sensibilidad con esparcimiento de 20 kilómetros con pozos de una profundidad aproximada entre 100-3500 metros.
- K-net: Esta red consta de más de 1000 estaciones de movimiento fuerte con un esparcimiento de 20 kilómetros, estos están ubicados a ras del suelo. Estos sismógrafos también están aprobados para ser medidores de intensidad.
- Kik-net: Esta red posee sismógrafos de movimiento fuerte que consta pares de sismómetros colocados a ras del suelo y en pozos, acompañados de sensores de alta sensibilidad Hi-net.
- M-net: Esta red está conformada por sismógrafos de banda ancha de 70 estaciones.
 Tiene la particularidad de ser instalados al final de un túnel, o a varios metros de la entrada.
- V-net: Es una red observación operada en 16 volcanes, esta red es para desarrollar pronósticos de erupciones, cuentan con sismómetros de banda ancha y receptores GPS.
- S-net: Esta red de observación del fondo del océano posee 150 unidades desde la costa Hokkaido hasta la prefectura de Chiba. Cada punto de observación posee sismómetros y medidores de presión de agua, la información se transmite por cable de fibra óptica. Se conectan por una longitud de aproximadamente 5700 kilómetros, el sistema de observación consta de 25 dispositivos de observación. Esta red submarina cuenta con codificación, ubicación de latitud, longitud y la profundidad que esta sumergida en el agua y para mayor detalle se ve en el anexo 16.
- Do-net: Se divide en Do-net 1 y en Do-net 2, es la red de observación que se encuentra en el fondo del océano posee 51 estaciones contando las 2 subredes, contienen sismómetros de movimiento fuerte, sismómetros de banda ancha, manómetros de agua, hidrófonos, manómetros de presión diferencial y termómetros. El sistema Do-net 1 es un bucle de cables troncales colocados desde la ciudad de Owase hasta una longitud aproximada de 250 kilómetros. Esta red submarina cuenta con codificación, ubicación de latitud, longitud y la profundidad que esta sumergida en el agua y para mayor detalle se ve en el anexo 17 y 18.
- Meso-net: Esta red se conforma por 300 estaciones con un esparcimiento entre dos y cinco kilómetros con el objetivo de monitorear la actividad sísmica solo del área metropolitana de Tokio.

Sagami Bay: Red sísmica posee sismógrafos y manómetros de agua, está conectado por unos 120 kilómetros de la costa a lo largo del canal de Sagami y cada uno consta de 6 sismógrafos y 3 manómetros. Esta red submarina cuenta con codificación, ubicación de latitud, longitud y la profundidad que esta sumergida en el agua y para mayor detalle se ve en el anexo 20.

Figura 42
Instrumento sísmico submarino

Nota. Instrumento Sísmico parte de la red sísmica submarina Donet de Japón.

Figura 43 Red sísmica S-net

Nota. La red sísmica submarina S-net de Japón se puede ver como engloba la zona en donde se produce el rose de las placas norteamericana, placa de filipinas y placa del pacifico.

4.5.2. Sistema de Alerta Temprana de Japón

La AMJ pone a funcionar este sistema el 1 de octubre de 2007, cuenta con una gran variedad de equipos sísmicos para la detección del sismo, aproximadamente con 4400 instrumentos, entre algunos de ellos están instalados en el fondo marino, así detectando con mayor tiempo posible la detección de ondas primarias del sismo y en

una respuesta a la población para la llegada de las ondas secundarias. Una vez tenido la detección esta información va a sus centros de procesamiento para procesar los datos obtenidos y dar rápidamente un diagnóstico para el aviso a la población.

Tiene el siguiente funcionamiento, cuando ocurre un sismo, vienen las primeras ondas sísmicas, estas ondas incluyen a las ondas primarias, las cuales son registradas primero, luego son las ondas secundarias que se propagan y son las que causan los daños a las estructuras, el objetivo es de alertar antes de la llegada de las ondas secundarias.

Las formas de alertar a la población, han avanzado y tienen de muchos tipos como son por teléfono móvil ya sea por el operador móvil o broadcaster, mediante el uso de la televisión nacional, radios, sirenas o vía internet. El tiempo de llegada se ha visto muy variado de acuerdo al lugar del epicentro, pero durante los años que ha estado en servicio se ha visto de tiempo entre 20 a 90 segundos de tiempo de respuesta.

Este sistema de alerta temprana tiene 2 características de dar una respuesta, las cuales son en "advertencia" y "pronostico", entre las advertencias están las advertencias especiales, las cuales vienen con sismos de mayor de intensidad. La velocidad en que se transmite las ondas sísmicas, es de muchos kilómetros por segundo, por eso se saca una ventaja en la transmisión de alerta mediante señales eléctricas cableadas y/o inalámbricas con la mejora de la tecnología Japón ha llegado que esa velocidad de transmisión llegue a unos 300 000 kilómetros por segundo.

4.5.2.1. Tipo Advertencia

Este tipo de alerta comenzó a funcionar desde el 1 de octubre del 2007, una de sus condiciones es se debe detecte u observe las ondas sísmicas en dos o más estaciones, y se espera que la intensidad sea 5 más baja o más alta. Esta alerta se emitirá al público en general y se debe registrar en dos o más estaciones para evitar las falsas alarmas, debidos a otras circunstancias cerca al instrumento sísmico. Se escogió la intensidad mínima de cinco porque en esta intensidad empiezan los daños significativos. Esta alerta, contiene hora del sismo, un dato aproximado del origen del sismo, las zonas donde se esperan las sacudidas del sismo. Se puede cancelar esta alerta en caso de que la información sea errónea.

La agencia meteorológica de Japón empezó a funcionar la "alerta especial" el día 30 de agosto de 2013, esto se da en casos que se espera sismos de intensidad mayor que 6 se ponen como advertencias especiales. Con el tiempo Japón ha podido mejorar en el tiempo de envío de la alerta, así como también la precisión de las zonas que se afectarían del sismo. Ahora el público puede distinguir entre estos tipos de alerta.

4.5.2.2. Tipo Pronóstico

Es tipo de alerta se usa para el control de dispositivos, también para mostrar la intensidad pronosticada y el tiempo de llegada de las ondas sísmicas a las ciudades. El contenido de esta alerta posee el valor aproximado del tiempo de ocurrencia y la ubicación del terremoto, el valor estimado de la intensidad. La diferencia entre los "pronósticos" y la información normal sobre los terremotos es la velocidad, la agencia meteorológica de Japón emitirá el pronóstico muchísimas veces (como 5 a 10 veces) después de unos segundos. El primer aviso se prioriza en la velocidad, conforme pase los segundos se ira aumentado información adicional. El pronóstico se envía basando como el procesamiento de un punto de observación y en otro punto adicional no se procesará. En caso de no ser un sismo se enviará un informe de cancelación después de diez segundos del anuncio.

Tabla 21Diferencia entre tipo alerta y advertencia

Clasificación	Nombre del Anuncio de información	Contenido
Alerta	Advertencia	Cuando se espera se
temprana de		espera sismo de
terremotos.		intensidad mayor o igual 5.
		En algunos casos se
		puede dar advertencias de
		tipo especiales. Se basa
		en dos puntos de
		observación.
Previsión de	Pronostico	Se anuncia cuando la
movimiento		intensidad máxima es de
de		3. Se basa en un punto de
terremotos.		observación.

Nota. Las principales diferencias según los tipos de alerta que da la Agencia Meteorológica de Japón.

Recordar que Japón usa una escala diferente a la que usamos como Richter o Mercalli, se usa desde 1996 y es brindad por la misma agencia meteorológica de Japón.

Tabla 22 Intensidad sísmica de Japón

Intensidad Sísmica	Experiencia
0	Las personas no sientes, pero si los
Ü	instrumentos sísmicos lo detectan.
1	Algunas personas detectan el sismo.
2	Las personas en silencio logran
2	detectarla.
3	Mas personas sienten, las personas
3	dormidas se despiertan
4	Las personas empiezan a sorprenderse
4	por el sismo.
Un poco menos de 5	Empieza un poco el pánico en la gente.
5 más Fuerte	Las personas se les hace difícil caminar
Un poco menos de 6	Es muy difícil estar de pie.
6 fuerte	No se puede estar de pie, ni moverse
7	Desastre en todas partes.

Nota. Japón tiene su propia escala sísmica de sismos, y es usada por algunos países del continente asiático, esto lo brinda su ente oficial de la actividad sísmica, la agencia meteorológica de Japón

Figura 44 Mensaje de Alerta

Nota. El mensaje de alerta de Japón durante una transmisión de televisión.

Figura 45 *Mensaje de alerta por celular*

Nota. Mensajes de texto por vía de celular a los japoneses antes de la llega del sismo.

4.6. Comparación

Año de inicio de la observación sísmica				
Perú	México	Chile	Ecuador	Japón
1944	1910	1908	1970	1884
¿Cuenta con sistema de alerta temprana en funcionamiento?				
Perú	México	Chile	Ecuador	Japón
No	Si	No	No	Si
¿Cuenta con más de un tipo de instrumento sísmico?				
Perú	México	Chile	Ecuador	Japón
Si	Si	Si	Si	Si
	¿Cuenta c	on alguna red s	ísmica submarina	?
Perú	México	Chile	Ecuador	Japón
No	No	No	No	Si

4.7. Propuestas de Alternativas de Prevención

Propuesta de alternativas de prevención con uso adecuado de la instrumentación sísmica. Luego de todo la información reunida y el análisis de la instrumentación sísmica se comienza con las alternativas de prevención con instrumentación sísmica. Primeramente, en Perú se cuenta con instrumentación sísmica con buena cantidad para la recolección de información sísmica, razón por la cual se debe de terminar con la instalación del sistema de alerta temprana de sismos (SASPE) que se tiene previsto para diciembre del 2021 según Hernando Tavera, presidente ejecutivo del instituto geofísico del Perú, para comenzar los primeros simulacros en el primer trimestre del 2022. Se comenzará con 106 estaciones a lo largo de toda la costa peruana, se espera tener más estaciones para poder detectar con más rapidez futuros eventos sísmicos.

4.7.1. Red Sísmica Submarina Peruana

Una opción de mejora de acá unos años será la red submarina peruana, si bien algunas de las estaciones del SASPE están ubicadas en islas de la costa para ganar tiempo, si tendríamos una estación submarina lo más cerca posible al inicio del sismo se podrá ganar muchísimo más tiempo de aviso, ya que, ante eventos sísmicos con epicentros en el fondo del mar, con instrumentos sísmicos en la tierra no se podrá detectar las ondas sísmicas a menos que lleguen a suelo firme, mientras si tuviéramos estaciones sísmicas en fondo del mar si podríamos detectar esas ondas. Habría mayor cantidad de información, así como se podría estudiar más a fondo, los sismos con epicentro en el mar con esta red conjuntamente acompañan de cables de fibra óptica para la detección de sismos.

4.7.2. Difusión de la Alerta Temprana

Para la difusión de alerta se espera contar con bocinas en toda la costa peruana y cada región tendrá un punto central de la alerta, este número de bocinas será importante para dar el alcance a toda la población de la venida del sismo, pero se debe tener otro tipo de avisos para dar a la población. Se debe aprovechar el aumento del servicio móvil (celular) en la mayoría de la población.

4.7.2.1. Mejoramiento de la Aplicación Sismos del IGP

Durante unos meses, se estuvo utilizando la aplicación del instituto geofísico del Perú para observación del funcionamiento de la misma, viendo su funcionamiento se pudo conocer que sirve como un aviso que un sismo paso, y pasados alrededor de 60 a 90 segundos te da a conocer los datos del evento sísmico a nivel nacional mediante una notificación como se verá en las siguientes imágenes. Esta aplicación se podría conectar con el SASPE, cuando esté funcionando, con dos tipos de notificaciones, una que sea como aviso de la llegada del sismo, dando a conocer las regiones afectadas y el tiempo aproximado de llegada de cada una y la otra notificación que sea para dar datos del sismo una vez terminado este evento, si bien esta aplicación funciona con alguna conexión a internet, podría ser una solución a una parte de la población que tenga instalada esta app gratuita. Inclusive se podría hablar con las distintas operadoras de Internet móvil en el Perú para que esta aplicación sea gratuita con los servicios móviles.

Figura 46 Notificación de Sismos

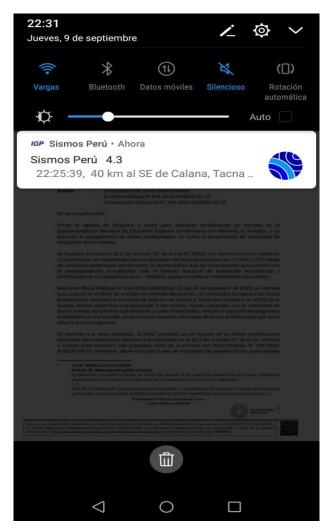

Nota. Esta notificación sirve para obtener datos rápidos del sismo en el territorio peruano.

Figura 47
Datos del Sismo

Nota. Datos del Sismo de la notificación ocurrido en Tacna el día 16 de setiembre del 2021 con su hora, latitud, longitud, intensidad y profundidad, así como su epicentro en el mapa.

Figura 48
Datos del Sismo de Tacna

Nota. Notificación del sismo de Tacna del día 9 de setiembre del 2021.

Figura 49
Datos del Sismo de Tacna

Nota. Datos del Sismo de la notificación ocurrido en Tacna el día 9 de setiembre del 2021 con su hora, latitud, longitud, intensidad y profundidad, así como su epicentro en el mapa.

4.7.2.2. Vía Mensaje de Texto

El 10 de abril del 2014, se presentó un proyecto de ley 03364/2013-CR, que contempla la creación, implementación, operación y mantenimiento un sistema de mensajería de alerta temprana, se le denomino SISMATE, tenía un envió de

comunicación masivo de mensajería que usaba los canales y medios de comunicación públicos y radiodifusión abierta, estaría a cargo del Ministerio de Transporte y Comunicaciones en ayuda del instituto nacional de defensa civil para validar el contenido, alcance y su difusión. Este proyecto de ley paso por varias comisiones y dictámenes y pudiendo obtener una fecha para votación en el congreso, pero nunca se llevó a cabo.

Si bien con este proyecto se podría avanzar muchísimo en el tema de la difusión, una vez terminado el SASPE, se puede avanzar con otras Instituciones, se debería tener una conversación entre el instituto geofísico del Perú, instituto nacional de defensa civil y el Ministerio de Transporte y Comunicaciones, porque si bien la mayoría de la población cuenta con un celular móvil a veces no se cuenta con una conexión a internet, y es ahí donde entra el mensaje vía de texto porque no requiere de conexión a internet, acá se debe tener una red aparte para evitar la saturación que pueda comunicar a los habitantes de la población de las región que afectaran el sismo según el Instituto Geofísico del Perú, una red de tipo GSM (Global System for Mobile Communication). Luego contactar a las distintas operadoras de servicio móvil para tener una comunicación de los mensajes optimo y si es posible tener este servicio gratuito.

4.7.2.3. Vía Televisión o Radio

Una vez con el funcionamiento del SASPE, se puede aprovechar el uso de la televisión como una forma de difusión que cubriría más a la población de la niñez porque son los que más usan la televisión en casa, se podría comenzar con algunas emisoras de nivel nacional para tener coordinaciones, y poder dar ese mensaje de alerta mientras su programación este transmitiendo y dando un sonido característico.

Con las radios es un tema diferente, se podría hablar con las emisoras de radio de mayor audiencia en cada región en la cual se pueda tener una comunicación interna o tener algún prototipo de aviso que sea inmediato y programado cuando el IGP de la alerta, este tipo de canal podrá alertar a la población de adultos mayores, porque se ve que ellos tienen mayor uso de este medio de comunicación.

4.7.2.4. Por vía Internet

Este método podría ser el más complejo, pero se ve en casos que alguno mientras tenga una conexión internet y este navegando por la web, en el territorio nacional y según el IGP se encuentre ubicado dentro de las regiones afectadas, que se

le pueda llegar el mensaje de alerta, mediante un anuncio, como son algunos anuncios de publicidad, pero en este caso de alerta sísmica.

Tabla 23 *Propuesta de alternativas*

Propuesta de Alternativa de Prevención	Característica
Mejoramiento de la app Sismos IGP	Esta aplicación ya tiene un
	funcionamiento interesante, pero con
	el SASPE podríamos dar una alerta
	más eficiente a todos los usuarios de
	esta y un beneficio es que es gratis.
Por mensaje de Texto	Esto podría ser junto con las bocinas
	podrán ser el tipo de alerta que llegaría
	a la mayoría de la población.
Por Radio o Televisión	Esto llega a una parte en especifica de
	la población ya sea a los niños
	mediante la televisión y la población
	adulta con el caso de la radio.
Por Vía internet	Este tipo de mensaje ayudara en parte
	a la población conectada a internet
	mediante un anuncio emergente en las
	pestañas de internet.

Nota. Esto métodos de transmisión de alertas giran en torno al SASPE, razón por la cual se debe terminar con la instalación y empezar los simulacros para el inicio formal de este sistema importante.

CAPITULO V: DISCUSIÓN

Según la primera hipótesis planteada correspondiente a la instrumentación será más efectiva con una propuesta de mejora preventiva con los países del cinturón de fuego del pacifico. Podemos afirmar que según la investigación realizada podemos afirmar algunos sistemas preventivos en calidad de mejora para nuestro sistema de instrumentación sísmica, en concordancia con (Instituto Nacional de Defensa Civil,2019), es el caso de una red submarina alrededor de la subducción de placa sudamericana y la placa de nazca, además realizar una propuesta a través de las instituciones oficiales en implementar con los medios tecnológicos que hoy se cuenta el sistema de alerta temprana tal cual posee Japón y México.

Según la segunda hipótesis planteada correspondiente a la instrumentación sísmica del Perú actualmente cuenta con solo sismógrafos y acelerógrafos el Perú cuenta con 376 instrumentos sísmicos aproximadamente, la concentración de la cantidad de acelerógrafos mayormente se encuentra en la costa peruana con un 60,90% mientras que el 39,10% se encuentra en la sierra y selva peruana, además el instituto geofísico del Perú administra 70 estaciones sísmicas aproximadamente distribuidas en todo el territorio peruano. Además, el instituto Geofísico del Perú tiene a su cargo la administración la red de GNSS (GPS) y de igual manera (Instituto Geofísico del Perú,2021) donde dan a conocer algunos de sus instrumentos sísmicos.

Según la tercera hipótesis planteada correspondiente del nivel de instrumentación sísmica del Perú no está en un nivel desarrollado frente a los demás países del cinturón de fuego del pacifico el Perú respecto a los países estudiados del cinturón de fuego representan el 8,71% de instrumentos sísmicos de Japón, con México tenemos una mayor cantidad de instrumentos sísmicos, pero México en su mayoría tiene cada estación con los tres instrumentos sísmicos en una sola estación como son, sismógrafos, acelerógrafos y los receptores GPS en concordancia con (Centro sismológico de México, 2021), y obviamente los dos países anteriormente mencionados cuentan con un sistema de alerta temprana de sismos. No tenemos la red submarina de instrumentos sísmicos alrededor de la subducción de la placa sudamericana y la placa de nazca. Y aun no se tiene en funcionamiento con un sistema de alerta temprana.

Según la cuarta hipótesis planteada correspondiente a propuesta de guías para las instituciones públicas del estado para su implementación y aplicación, debido a las al

desarrollo de las herramientas digitales y modernas permiten omitir pasos o detalles de una guía que se venía desarrollando antiguamente, para facilitar la comunicación o el aviso de prevención frente a un evento sísmico, con ayuda de instrumentos sísmicos y un sistema de alerta temprana, con ayuda de instituciones encargadas de comunicar a la población, como en concordancia (Centro nacional de prevención de desastres de Mexico,2018).

CONCLUSIONES

En el análisis de la instrumentación sísmica se propone realizar un sistema de red de acelerógrafos en el fondo marino que permita tener con mucho tiempo de anticipación la ocurrencia del sismo y permita una comunicación y/o difusión oportuna a través de un sistema de alerta temprana.

Se determinó que el Perú cuenta con cuatro redes de acelerógrafos, la red del Colegio de Ingenieros con 34 acelerógrafos, la red del instituto geofísico del Perú con 193 acelerógrafos, la red del centro japones de investigaciones sísmicas y mitigación de desastres con 76 acelerógrafos y la red del Servicio Nacional de Capacitación para la industria de la construcción con 10 acelerógrafos, además el Instituto Geofísico del Perú cuenta con 70 estaciones sísmicas, 63 edificios instrumentados y la red de GPS.

El nivel de instrumentación sísmica en el Perú frente a los demás países del cinturón de fuego del pacifico se ve grandemente superado en cantidad de instrumentos sísmicos tal es el caso de Japón que cuenta con 4313 equipos sísmicos, gran parte se encuentran instaladas en una red submarina además tiene implementado desde el año 2011 un sistema de alerta temprana, así mismo México cuenta con un sistema de alerta temprana en funcionamiento desde el año 1991, Chile se ve en paridad de tecnología frente a Perú sin embargo podemos resaltar que cuenta con un sistema de alerta de emergencia ya desarrollado y en funcionamiento. Perú a través del instituto geofísico del Perú viene desarrollando un proyecto ambicioso para instalar el sistema de alerta temprana de sismos y Ecuador está en proceso de implementación de instrumentación sísmica.

En el Capítulo IV se da a conocer alternativas tecnológicas para comunicación con fines preventivos el mismo que consta de una aplicación, de un envió masivo de mensajes, de avisos televisión y radio, y avisos vía internet.

RECOMENDACIONES

Se recomienda las instituciones que administran las redes sísmicas del Perú poder renovar o en todo caso adquirir equipos más tecnológicos para así poder tener muchos más avances sobre la información de futuros eventos de sismos y al Instituto Geofísico del Perú avanzar rápidamente con la instalación completa del Sistema de alerta temprana para sismos.

Se recomienda a las instituciones administradoras de todas las redes sísmicas del Perú tener su información actualizada sobre su inventario de equipos con sus características y si en caso alguna persona quisiera realizar algún tipo de investigación en relación a este tema poderle facilitar la información necesaria.

Se recomienda al Gobierno central del Perú tener reuniones cada cierto tiempo con el personal que administra estas redes y conversar sobre nuestro estado actual y también observar a países que están situado en el cinturón de fuego y tienen nuestro mismo riesgo sísmico, para ver sus maneras de prevención, ya sea con la educación, sensibilización o con el uso de instrumentos sísmicos, así también se recomienda que todos los equipos que no estén trabajando correctamente, realizar la reparación para que el equipo trabaje con normalidad y pueda aportar con su información registrada ,terminar con la instalación del SASPE y comenzar con los simulacros y posteriormente comenzar con su utilización frente a sismos.

Se recomienda a las instituciones públicas, seguir las alternativas de prevención para poder seguir y usarlo en la población de acuerdo a las indicaciones, en todo caso mejorar con sus planes de prevención, o siguiendo con algunas maneras de prevención de los otros países situados en el cinturón de fuego.

REFERENCIAS BIBLIOGRÁFICAS

- Cabrera Huayhua, Juan Erik (2020). La gestión de riesgo de desastre y la responsabilidad social En el gobierno regional de Tacna,2019. Universidad Nacional Jorge Basadre Grohmann, Tacna, Tacna-Perú.
- Ccallo Huaquisto, Freddy Javier (2003). La magnitud de sismos locales y regionales ocurridos en Perú a partir de la onda LG y la duración de su registro efectos y daños en la ciudad de Moquegua debido al sismo de Arequipa del 23 de junio de 2001. Universidad Nacional de San Agustín, Arequipa Perú.
- Chura Arocutipa, Edgar (2012). Evaluación y propuesta de un plan de gestión del Riesgo de Origen sísmico en el distrito de Ciudad Nueva Tacna. Universidad nacional Jorge Basadre Grohmann, Tacna, Tacna Perú.
- Condezo Celis, Mayra Natali (2019). Plan de prevención y reducción de riesgo de desastre sísmico del distrito de comas. Universidad Federico Villareal, Lima Perú.
- Córdova Krugg, Arístides Iván (2020). Empleo de la tecnología en la prevención y atención de la población damnificada en caso de desastres naturales en el Perú, 2017. Universidad de Centro de altos estudios nacionales, Lima Perú.
- Guzmán Onofre Álvaro y Valdés Martin Mario Alberto (2012). *Detección de sismos utilizando un diodo laser.* Instituto Politécnico Nacional, México D.F México.
- Otero Foliaco, Jair Enrique y Rodríguez Espinosa, Erika Vanessa y Vargas Jiménez Danilo Santiago (2013). *Alternativas para la detección y monitoreo de amenazas sísmicas basadas en Arduino.* ING USBMED.
- Sánchez Trujillo, Dante Alexis (2019). *Diseño de una red de instrumento sísmicos para medición de Intensidades sísmicas, Trujillo 2018.* Universidad Cesar Vallejo, Trujillo, La libertad Perú.
- Sotelo Almendarez, Luz Marina y Requene Yamir, Erick (2016). Sismógrafo electrónico de medición y detección de movimiento telúricos con salida impresa, para la carrera de ingeniería geológica de la unan Managua 2016. Universidad nacional Autónoma de Nicaragua.
- Vasallo Olano, Miguel Iván (2018). Gestión de riesgo de desastres por sismos en el cercado de Lima, 2018. Universidad Cesar Vallejo, Trujillo, La Libertad Perú

ANEXOS

Anexo 1

Matriz de consistencia

ANÁLISIS DE INSTRUMENTACION SISMICA Y PROPUESTA DE MEJORA PREVENTIVA COMPARADO CON LOS PAISES DEL CINTURON DE FUEGO DEL PACIFICO, TACNA-2021.

PROBLEMA	OBJETIVOS	HIPOTESIS	VARIABLES	INDICADORES	METODOLOGIA
Problema General	Objetivo General	Hipótesis General	Variable independiente	Indicadores de la V.I.	Tipo de estudio:
¿Cuál es la	Analizar la	La instrumentación	Instrumentación sísmica	Tipo de Equipos.	Explicativo -
instrumentación	instrumentación	sísmica será más		Tecnología del equipo.	Aplicativo
sísmica para una	sísmica para una	efectiva con una		Cantidad de equipos.	
propuesta de mejora	propuesta de mejora	propuesta de mejora			Nivel de
preventiva comparada	preventiva	preventiva			investigación:
con los países del	comparada con los	comparándola con los			Analítico - Integrativo
cinturón de fuego del	países del cinturón	países del cinturón de			Anamico - integrativo
pacifico?	de fuego del pacifico.	fuego del pacifico.			
Problema	Objetivo Especifico	Hipótesis	Variables dependientes	Indicadores de la V. D	
Específicos		especificas			
¿Cuál es la	Determinar la	La instrumentación	Propuesta de mejora	Alternativas de	Población:
instrumentación	instrumentación	sísmica del Perú	preventiva en	prevención.	Países del cinturón de
sísmica del Perú?	sísmica del Perú.	actualmente cuenta	comparación de los	Instrumentos sísmicos.	fuego.
		con solo sismógrafos,	países del cinturón de		
		acelerógrafos y	fuego.		Muestra:
		equipos GPS.			Instrumentación
¿Cuál es el nivel de	Evaluación del nivel	El nivel de			sísmica de los países
instrumentación	de instrumentación	instrumentación			
					del cinturón de fuego.

sísmica del Perú	sísmica del Perú	sísmica del Perú no		
frente a los demás	frente a los demás	está en un nivel		
países del cinturón de	países del cinturón	desarrollado frente a		
fuego?	de fuego.	los demás países del		
		cinturón de fuego del		
		Pacifico.		
¿Cuáles son las	Propuesta de	Propuesta de		
alternativas de	alternativas difusión	alternativas de		
difusión de una alerta	de alerta sísmica.	difusión de alerta		
sísmica?		sísmica para las		
		instituciones públicas		
		del estado.		

Anexo 2 *Red de acelerógrafos del CISMID*

Donién	Ofdina	Manakaa	UBIC	ACION		Marca y			
Región	Código	Nombre	Este (°)	Oeste (°)	Msnm	Modelo			
		Jorge				CV-374A2			
Tacna	TAC001	Basadre	-18,02	-70,25	214	Tokyo			
		Grohmann				Sokushin			
		Alberto				CV-374A2			
Tacna	TAC002	Giesecke	-18,03	-70,23	212	Tokyo			
		Matto (UPT)				Sokushin			
Tacna	TAC003	Ciudad	-17,98	-70,24	683	Etna			
Tacha	170003	Nueva	-17,30	-70,24	005	Kinemetrics			
Moquegu	MOQ00	Cesar				Etna			
a	1	Vizcarra	-17,19	-70,93	1461	Kinemetrics			
a	'	Vargas				Tanemetrics			
Moquegu	MOQ00	Estación	-17,20	-70,92	1562	Etna			
а	2	MOQ2	17,20	70,02	1002	Kinemetrics			
Moquegu	MOQ00	Estación	-17,19	-70,92	1460	RION SM10-B			
а	3	MOQ3	17,10	11,12		THOR OWITO B			
Moquegu	MOQ00	Estación	-16,74	-70,68	3508	Etna			
а	4	MOQ4	. 0,	. 0,00	0000	Kinemetrics			
Moquegu	MOQ00	José Carlos	-17,19	-70,94	1420	Etna			
а	5	Mariátegui	,.0	. 5,5 .	0	Kinemetrics			
		Universidad							CV-374A2
Arequipa	AQP001	Nacional San	-16,40	-71,52	2413	Tokyo			
		Agustín				Sokushin			
Arequipa	AQQ00	Characato,	-16,47	-71,49	2499	Etna			
, «oquipa	2	Arequipa	. 0,	7 1, 10	2.00	Kinemetrics			
		Universidad							
		Nacional San				Etna			
Ica	ICA002	Luis	-14,09	-75,73	409	Kinemetrics			
		Gonzaga de				ranomounos			
		Ica							
		Dirección de							
Lima	CAL001	Hidrografía y	-12,07	-77,16	77,16 22	130-SMA			
		navegación	,	,.0	- -	REFTEK			
		DHNPE							

Lima	CAL002	Colegio San Antonio Marianistas	-12,06	-77,12	34	130-SMA REFTEK
Lima	CAL003	Dirección de Sanidad Marítima Internacional	-12,06	-77,14	26	130-SMA REFTEK
Lima	CAL004	I.E.T. Mariscal Ramon Castilla Marquesado	-12,04	-77,12	34	130-SMA REFTEK
Lima	CAL005	C.S. Acapulco - ACAPU	-12,02	-77,14	32	130-SMA REFTEK
Lima	CAL006	I.E. Víctor Raúl Haya de la Torre	-11,94	-77,14	26	130-SMA REFTEK
Lima	CAL007	I.E.S.P.P. María Madre	-12,01	-77,10	50	130-SMA REFTEK
Lima	CAL008	I.E. Antonia Moreno Cáceres	-11,89	-77,11	227	130-SMA REFTEK
Lima	CAL009	C.S. Mi Perú	-11,86	-77,12	100	130-SMA REFTEK
Lima	CAL010	I.E. Augusto Salazar Bondy	-12,04	-77,09	85	130-SMA REFTEK
Lima	CAL011	Colegio Militar Leoncio Prado	-12,07	-77,12	25	130-SMA REFTEK
Lima	CAL012	C.S. Defensores de la Patria	-11,88	-77,14	19	130-SMA REFTEK
Lima	LIM030	Universidad San Ignacio de Loyola	-12,24	-76,87	72	130-SMA REFTEK

						CV-374A2	
Lima	LIM007	Villa el	-12,	-76,94	167	Tokyo	
		Salvador	,	. 0,0 .		Sokushin	
		Universidad				23	
		de Ciencias				130-SMA	
Lima	LIM027	Aplicadas	-12,20	-77,01	26	REFTEK	
		Chorrillos					
		ServiUNI-				130-SMA	
Lima	LIM026	SERVI	-12,13	-77,00	124	REFTEK	
		Estación					Acelerógrafo
Lima	SCO	Surco	-12,13	-76,98	0	Analógico	
		Facultad de				, manegree	
		Ingeniería					
		Civil,				130-SMA	
Lima	LIM017	Universidad	-12,13	-76,98	126	REFTEK	
		Ricardo					
		Palma					
		Casa Dr.				Etna	
Lima	LIM004	Piqué	-12,09	-76,90	145	Kinemetrics	
		FIA					
	LIM010	Universidad		70.04	0.40	130-SMA	
Lima		San Martin	-12,07	-76,94	249	REFTEK	
		de Porres					
		Universidad					
		San Ignacio				130-SMA	
Lima	LIM028	de Loyola –	-12,07	-76,95	264	REFTEK	
		La Molina					
		Instituto de					
	1.15.40.10	Matemática y	40.5-	- 0.6-	0.10	130-SMA	
Lima	LIM016	Ciencias	-12,07	-76,95	240	REFTEK	
		Afines					
		Instituto					
		Nacional de					
		Investigación					
		у				400 0144	
Lima	LIM015	capacitación	-12,08	-77,00	192	130-SMA	
		en				REFTEK	
		Telecomunic					
		aciones					
		(INICTEL)					
	<u> </u>	, ,					

		Centro				
Lima	LIM014	nacional de estimación, Prevención y Reducción de riesgo de desastres (CENEPRED)	-12,09	-77,02	142	130-SMA REFTEK
Lima	LIM005	Parque de la Reserva, Casa	-12,07	-77,03	130	CV-374A2 Tokyo Sokushin
Lima	PRQ	Parque de la Reserva	-12,07	-77;04	130	Acelerógrafo Analógico
Lima	LIM011	Consejo Nacional del Colegio de Ingenieros	-12,09	-77;05	116	130-SMA REFTEK
Lima	LIM025	Centro preuniversita rio UNI - CEPRE	-12,09	-77,06	111	130-SMA REFTEK
Lima	LIM012	Facultad de Ingeniería Civil, Universidad Federico Villareal	-12,09	-77;08	79	130-SMA REFTEK
Lima	LIM029	Universidad Peruana de Ciencias Aplicadas, San miguel	-12,09	-77,10	57	130-SMA REFTEK
Lima	LIM013	EAP Ingeniería civil, Universidad nacional Mayor de San Marcos	-12,06	-77,09	60	130-SMA REFTEK

Lima	ZAR	Estación	12.02	77.01	0	Acelerógrafo
Lima	ZAK	Zarate	-12,02	-77,01	U	Analógico
Lima	LIM002	Decanato	-12,02	-77,05	140	130-SMA
		FIC- UNI	,=_	,		REFTEK
		Departament o Académico				CV-374A2
Lima	LIM-	de	-12,02	-77,05	127	Tokyo
	UNI1	Estructuras,	,=_	,00		Sokushin
		FIC- UNI				
	LIM-					CV-374A2
Lima	UNI2	FIGM-UNI	-12,02	-77;05	127	Tokyo
	OIVIZ					Sokushin
		Laboratorio				CV-374A2
Lima	LIM-	Nacional de	-12,02	-77;05	109	Tokyo
	UNI4	Hidráulica-				Sokushin
		UNI Compañía de				CV-374A2
Lima	LIM008	bomberos 65	-12,02	-77,06	102	Tokyo
Lima	LIMOOO	SMP	. =, = =	77,00	102	Sokushin
		Villa el				
	LIM-	Carmen,				CV-374A2
Lima	SLP	Independenci	-12,02	-77,05	132	Tokyo
		а				Sokushin
		Estación				130-SMA
Lima	LIM001	Jorge Alva	-12,01	-77,05	108	REFTEK
		Hurtado				
		Municipalida				
Lima	LIM024	d Distrital de	-12,00	-77;05	96	130-SMA
		Independenci				REFTEK
		a Municipalida				
Lima	LIM018	d Distrital de	-11,99	-77,07	69	130-SMA
		los Olivos	,00	,		REFTEK
		Complejo				100 5111
Lima	LIM031	Deportivo	-11,97	-77,04	265	130-SMA
		José Olaya				REFTEK
		Municipalida				130-SMA
Lima	LIM019	d distrital de	-11,95	-77,06	125	REFTEK
		Comas				

Lima	LIM021	Estadio Ricardo Palma	-11,90	-77,03	197	130-SMA REFTEK
Lima	LIM022	Municipalida d distrital de Puente Piedra	-11,87	-77,08	193	130-SMA REFTEK
Lima	LIM006	Puente Piedra, Casa	-11,85	-77,07	194	CV-374A2 Tokyo Sokushin
Lima	LIM020	Municipalida d distrital de Santa Rosa	-11,79	-77,16	61	130-SMA REFTEK
Lima	LIM023	Estadio José Balta	-11,77	-77,17	36	130-SMA REFTEK
San Martin	MOY00 1	Moyobamba, casa	-6,03	-76,97	891	RION SM10-B
Cusco	CUS001	Universidad Nacional Abad del Cusco	-13,52	-71,96	3359	CV-374A2 Tokyo Sokushin

Anexo 3 *Red de Acelerógrafos del CIP*

Fatantín	111.117.	01	Coordenadas geográficas	
Estación	Ubicación	Suelo	Latitud sur (°)	Longitud Oeste (°)
CIP Lima	San isidro	Grava aluvial	-12,09	-77,05
CIP Ica	Ica	Arena media	-14,07	-75,73
CIP Cusco	San Jerónimo	Grava con arcilla	-13,54	-71,90
CIP Moquegua	Mariscal Nieto	Arena arcillosa	-17,19	-70,93
CIP Tacna	Calana	Grava aluvial con bolonería	-17,95	-70,18
CIP Arequipa	José Luis Bustamante y Rivero	Grava limosa	-16,45	-71,50
CIP Piura	Piura	Arena arcillosa	-5,17	-80,63
CIP Tumbes	Tumbes	Arcilla de baja comprensibilidad	-3,56	-80,43

CIP Lambayeque	Chiclayo	Arcilla con limo	-6,82	-79,91
CIP Huánuco	Huánuco	Grava arcillosa	-9,94	-76,24
CIP La Libertad	Trujillo	Arena con gravilla	-8,12	-79,04
CIP Amazonas	Chachapoyas	Arcilla alta comprensibilidad	-6,23	-77,88
CIP Cajamarca	Cajamarca	Grava arcillosa	-7,18	-78,51
CIP Moyobamba	Moyobamba	Arcilla	-6,03	-76,97
CIP Chimbote	Nuevo Chimbote	Arena mal gradada	-9,13	-78,52
CIP Huancavelica	Huancavelica	Arenoso	-12,78	-74,96
CIP Madre De Dios	Puerto Maldonado	Arena arcillosa	-12,60	-69,19
CIP Ica-Nazca	Nazca	Arenoso	-14,85	-74,94
CIP Apurímac	Abancay	Grava arenosa	-13,63	-72,88
CIP Consejo Nacional	Miraflores	Grava aluvial	-12,12	-77,03
Facultad de Teología Redemptoris Master	Callao	Arena limosa	-12,07	-77,16
CIP Pasco	Cerro de Pasco	Caliza	-10,66	-76,25
CIP La libertad – Jaen	Chepén	Arena limosa	-7,22	-79,44
CIP Lima – Cañete	Cañete	Grava limosa	-13,08	-76,39
CIP Arequipa – Majes	Majes	Grava arenosa	-16,39	-72,18
CIP Junín	Huancayo	Grava mal gradada	-15,01	-73,19
CIP Ayacucho – Coracora	Coracora	Suelo arcilloso	-12,06	-75,20
CIP Ucayali	Callería	Arcilla de alta comprensibilidad	-8,38	-74,53
CIP Ayacucho	Ayacucho	Grava aluvial	-13,15	-74,23
CIP San Martín	Tarapoto	Arcilla de alta comprensibilidad	-6,46	-76,43
CIP Arequipa 2	Arequipa	Grava arenosa	-16,4	-71,54
CIP Ica – Pisco	Pisco	Grava mal gradada	-13,72	-76,21
CIP Tingo María	Leoncio Prado	Arcilloso	-9,29	-75,99
CIP Huaraz	Huaraz	Arena arcillosa	-9,53	-77,53

Anexo 4
Red del CISMID- UNI- CIP

Región	Nombre	Lugar	Lugar	Altura	Suelo	Marca y
Region	Nombre	Este	Oeste	Aitura	Suelo	modelo
Tacna	Unjbg –	-18,03	-70,27	491	Grava mal	Reftek 130-
Tuona	Cristo Rey	10,00	10,21	451	gradada	SMHR
Tacna	Unjbg	-18,02	-70,25	539	Grava mal	Reftek 130-
Taona		10,02	70,20	000	gradada	SMHR
Tacna	Unjbg – Alto	-17,99	-70,26	617	Arena Limosa	Reftek 130-
	alianza	,	-, -			SMHR
Tacna	Unjbg – Alto	-17,99	-70,25	607	Arena Limosa	Reftek 130-
	alianza 2	,	,			SMHR
Tacna	CIP - Tacna	-17,95	-70,18	841	Grava Aluvial	Reftek 130-
		,	,		con Bolonería	SMA
Moquegua	Unam	-17,60	-71,34	56	Roca	Reftek 130-
						SMHR
Moquegua	CIP -	-17,19	-70,93	1422	Arena arcillosa	Reftek 130-
	Moquegua					SMA
Arequipa	Unsa	-17,02	-72,03	0	Roca	Reftek 130-
						SMHR
Arequipa	CIP - Majes	-16,40	-72,18	1338	Grava Arenosa	Reftek 130-
	OID					SMHR
Arequipa	CIP -	-16,45	-71,50	2413	Grava Limosa	Reftek 130-
	Arequipa CIP –					SMA Reftek 130-
Arequipa		-16,40	-71,54	2343	Grava Arenosa	
	Arequipa 2 CIP -					SMHR
Ica	Coracora	-15,01	-73,58	3206	Arcilla	Reftek 130-
	Coracora					SMHR Reftek 130-
Ica	Palpa	-14,53	-75,19	363	Arena	SMHR
						Reftek 130-
Ica	Única	-14,09	-75,73	410	Arena	SMHR
						Reftek 130-
Ica	CIP Ica	-14,07	-75,73	437	Arena Media	SMA
Ica	CIP Nazca	-14,85	-74,94	632	Arena	Reftek 130-
					Crove mel	SMHR Pottok 120
Ica	CIP Pisco	-13,72	-76,21	19	Grava mal	Reftek 130-
					gradada	SMHR

	Γ				1	Reftek 130-
Lima	Mala	-12,67	-76,65	22	Grava saturada	SMA
Lima	Unab	-10,73	-77,77	74	Grava arenosa	Reftek 130- SMHR
Lima	CIP CN	-12,12	-77,03	124	Grava aluvial	Reftek 130- SMHR
Lima	Caral	-10,89	-77,53	355	Grava arenosa	Reftek 130- SMA
Lima	CIP Lima	-12,09	-77,05	108	Arcilla	Reftek 130- SMA
Lima	Asia	-12,89	-76,51	49	Arena	Reftek 130- SMHR
Lima	Sedapal la Atarjea	-12,03	-76,98	277	Roca	Reftek 130- SMHR
Lima	Uni	-12,02	-77,05	107	Grava arenosa	Reftek 130- SMHR
Lima	CIP Cañete	-13,08	-76,39	50	Grava aluvial	Reftek 130- SMHR
Lima	Untels	-12,21	-76,93	201	Arena mal gradada con limo	Reftek 130- SMHR
Lima	Brisas de Villa	-12,22	-76,99	48	Arena mal gradada	Reftek 130- SMHR
Lima	Callao	-12,07	-77,16	18	Arena limosa	Reftek 130- SMA
Ancash	CIP Chimbote	-9,13	-78,52	31	Arena mal gradada	Reftek 130- SMA
Ancash	Unasam	-9,52	-77,53	3120	Arena de baja comprensibilidad	Reftek 130- SMA
Ancash	Uns	-9,12	-78,52	56	Arena mal gradada	Reftek 130- SMA
Ancash	Usp	-9,05	-78,59	31	Arena	Reftek 130- SMA
Ancash	CIP Huaraz	-9,53	-77,53	3065	Grava	Reftek 130- SMHR
Ancash	Yungay	-9,15	-77,74	2535	Grava arcillosa	Reftek 130- SMHR
La Libertad	Pacasmayo	-7,40	-79,56	12	Grava Arenosa	Reftek 130- SMA

Lalibartad	CIP	7.00	70.44	110	Arena limosa	Reftek 130-
La Libertad	CHEPEN	-7,22	-79,44	119	Arena iimosa	SMHR
La Libertad	UPAO	-8,13	-79,03	21	Arena Arcillosa	Reftek 130-
	015.1					SMA
La Libertad	CIP La Libertad	-8,12	-79,04	28	Arena Gravosa	Reftek 130- SMA
	Libertad					Reftek 130-
La Libertad	UNT	-8,11	-79,04	28	Arena gravosa	SMHR
	CIP					Reftek 130-
Lambayeque	Lambayeque	-6,82	-79,91	7	Arcilla Limosa	SMA
Lambayeque	USAT	-6,76	-79,86	32	Arcilla	Reftek 130-
Lambayeque	OOAT	-0,70	-73,00	32	Alcilla	SMHR
Piura	Talara	-4,55	-81,18	145	Lutita	Reftek 130-
1 1010	raiara	1,00	01,10	0	Zana	SMA
Piura	CIP Piura	-5,17	-80,63	42	Arena Arcillosa	Reftek 130-
		,	,			SMA
Piura	Upao- Piura	-5,17	-80,63	50	Arena Arcillosa	Reftek 130-
						SMHR
Piura	UNF	-4,91	-80,73	76	Arena	Reftek 130-
						SMHR Deffet 120
Piura	UNP	-5,18	-80,62	50	Arena Arcillosa	Reftek 130- SMHR
					Arcilla de baja	Reftek 130-
Tumbes	CIP Tumbes	-3,56	-80,43	23	comprensibilidad	SMA
					Arena mal	Reftek 130-
Tumbes	Untumbes	-3,59	-80,50	3	Gradada	SMHR
					Arcilla de alta	Reftek 130-
Amazonas	Untrm	-6,23	-77,85	2378	comprensibilidad	SMHR
	CIP	0.00	77.00	0070	Arcilla de alta	Reftek 130-
Amazonas	Amazonas	-6,23	-77,88	2372	comprensibilidad	SMA
Anurímaa	CIP	12.64	-72,88	2404	Arena Limosa	Reftek 130-
Apurímac	Apurímac	-13,64	-72,00	2401	Arena Limosa	SMHR
Ayacucho	CIP	-15,01	-73,78	3206	Arcilla	Reftek 130-
Ayacacho	Coracora	13,01	73,70	3200	Alona	SMHR
Ayacucho	CIP	-13,15	-74,23	2880	Grava aluvial	Reftek 130-
7.174340110	Ayacucho	. 5, 15	,20			SMHR
Ayacucho	Unsch	-13,15	-74,22	2805	Grava mal	Reftek 130-
		, -	,	_	Gradada	SMA

0.1.	11.2	5.74	70.04	74.4	Grava mal	Reftek 130-
Cajamarca	Unj	-5,71	-78,81	714	Gradada	SMA
Cajamarca	CIP	-7,17	-78,51	2736	Grava Arcillosa	Reftek 130-
Cajamarca	Cajamarca	-7,17	-70,51	2730	Grava Arcillosa	SMA
Cajamarca	Unc	-7,17	-78,50	2691	Limo arcilloso	Reftek 130-
Gajamarda	O ile	,,	7 0,00	2001	Zimo aromoso	SMHR
Pasco	CIP Pasco	-10,66	-76,25	4386	Caliza	Reftek 130-
		-,	-, -			SMHR
Cusco	CIP Cusco	-13,54	-71,91	3269	Grava Arcillosa	Reftek 130-
			,			SMA
Cusco	UAC	-13,53	-71,97	3399	Arcilla Gravosa	Reftek 130-
						SMHR
Cusco	UAC San	-13,54	-71,90	3274	Grava Arcillosa	Kinemetrics
	jerónimo					Obsidian
Cusco	Cusco	-13,52	-71,98	3400	Arcilla Gravosa	Reftek 130-
	OID					SMHR
Huancavelica	CIP	-12,78	-74,97	3686	Arena	Reftek 130-
	Huancavelica					SMHR
Huánuco	CIP Huánuco	-9,94	-76,24	1916	Grava Arcillosa	Reftek 130-
	CID Tings					SMHR
Huánuco	CIP Tingo María	-9,30	-76,00	674	Arcilla	Reftek 130- SMHR
	IVIAITA					Reftek 130-
Huánuco	Unas	-9,31	-76,00	646	Arcilla	SMHR
					Grava mal	Reftek 130-
Junín	CIP Junín	-12,06	-75,20	3288	gradada	SMHR
					gradada	Reftek 130-
Junín	UNCP	-12,03	-75,24	3275	Grava	SMHR
						Reftek 130-
Loreto	UNAP	-3,76	-73,27	80	Arcilla	SMHR
						Reftek 130-
Loreto	UNAAA	-5,90	-76,13	136	Arena Arcillosa	SMHR
Madre de	CIP Madre					Reftek 130-
Dios	de Dios	-12,60	-69,19	205	Arena Arcillosa	SMHR
		1- 10		0000		Reftek 130-
Puno	UNAJ	-15,49	-70,15	3823	Arcilla Limosa	SMHR
Dunc	HANOV	15 50	70.40	2022	Aroillo Lissaaa	Reftek 130-
Puno	UANCV	-15,53	-70,12	3833	Arcilla Limosa	SMHR
		<u> </u>	<u> </u>	<u> </u>	1	1

Puno	UNAP	-15,82	-70.02	3850	Arena	Reftek 130-
1 4110	ONAI	-10,02	-70,02	3030	Alena	SMHR
San Martin	CIP	-6,03	-76,97	879	Arcilla	Reftek 130-
Sair Martin	Moyobamba	-0,03	-70,97	0/9	Alcilla	SMA
San Martin	CIP Tarapoto	-6,46	-76,43	281	Arcilla de alta	Reftek 130-
Sair Martin	Он тагарою	-0,40	-70,43	201	comprensibilidad	SMHR
Ucayali	UNIA	-8,35	-74.59	167	Arcilla	Reftek 130-
Ocayan	UNIA	-0,33	-74,59	107	Alcilla	SMHR
Ucayali	CIP Ucayali	-8,38	-74,53	146	Arcilla de alta	Reftek 130-
Ocayan	Oli Ocayali	-0,50	-74,55	140	comprensibilidad	SMHR

Anexo 5 *Red de Acelerógrafos de Sencico*

Región	Código	Nombre	mbre (Este °) (Oeste °) Msnm		Menm	Suelo	Marca y
Region	Codigo	Nonibre	(LSIE)	(Oesie)	WiSillii	Suelo	Modelo
Tacna	SCTA	Sencico Tacna	-17,99	-70,24	673	Arena limosa	Basalt Kinemet rics
Arequipa	SCAR	Sencico Arequipa	-16,38	-71,54	2413	Arena Limosa	Basalt Kinemet rics
lca	SCIC	Sencico Ica	-14,06	-75,74	428	Arena mal gradada con Limo	Obsidia n Kinemet rics
Lima	BORJ	Sencico San Borja	-12,09	-77,01	181	Grava mal gradada	Basalt Kinemet rics
La libertad	SCTR	Sencico Trujillo	-8,09	-79,01	81	Arena limosa	Basalt Kinemet rics
Piura	SCPI	Sencico Piura	-5,19	-80,64	47	Arena Iimosa	Basalt Kinemet rics
Junín	SCHY	Sencico Huancayo	-12,06	-75,21	3289	Grava	Obsidia n Kinemet rics

							Obsidia
Avecuebe	SCAY	Sencico	-13,17	-74,20	2782	Arena	n
Ayacucho	SCAT	Ayacucho	-13,17	-74,20	2102	Limosa	Kinemet
							rics
							Obsidia
Cusco	SCCU	Sencico	-13,53	-71,96	3377	Arena	n
Cusco	3000	Cusco	-13,33	-71,90	3377	arcillosa	Kinemet
							rics
							Obsidia
Loreto	SCIQ	Sencico	-3,74	-73,24	103	Arena	n
Loieto	JOIQ	Iquitos	-5,74	-73,24	103	arcillosa	Kinemet
							rics

Anexo 6 *Edificios Instrumentados del Perú*

Región	Propietario	Código	Ubicación		
Region	ropiotano		Este (°)	Oeste (°)	
Lima	Condominio Los defensores La	CH01N	-12,17	-77,01	
	venturosa Inmobiliaria	0110111	,	11,01	
Lima	Empire Inversiones SAC	SI27N	-12,09	-77,04	
Lima	Inmobiliaria y negocios Buenti SAC	SI26N	-12,10	-77,03	
Lima	Centro empresarial Rivera Navarrete	SI25N	-12,09	-77,02	
Lima	Pirlotus	LC03N	-12,08	-77,03	
Lima	Edificio Multifamiliar Essenza	MF09N	-12,11	-77,03	
Lima	Inmobiliaria Actual	MI01N	-12,08	-77,10	
Lima	BK Asociados SAC	LC02N	-12,07	-77,03	
Lima	T y C Grupo Constructor SAC	SI24N	-12,09	-77,04	
Lima	Urbana Perú	JM03N	-12,11	-77,02	
Lima	Inmobiliaria Amelga SAC	BO02N	-12,11	-76,98	
Lima	JJC Edificaciones SAC	MF07N	-12,12	-77,03	
Lima	Condominio Home Town	BO01N	-12,09	-76,98	
Lima	Inmobiliaria Artigal SAC	SI23N	-12,10	-77,01	
Lima	Constructora Marte SA	LI02N	-12,07	-77,03	
Lima	Pezet 561 SAC	SI22N	-12,10	-77,04	
Lima	Inversiones Larco 1232 SAC	MF06N	-12,13	-77,03	
Lima	Viva GYM SA	SI21N	-12,10	-77,04	
Lima	Talbot Hoteles SAC	SI20N	-12,09	-77,03	
Lima	Corporación Inmobiliaria Nérida María SAC	SI16N	-12,09	-77,05	

Lima	Northing SAC	SI15N	-12,09	-77,01
Lima	Hotelera Costa el Pacifico SA	SI14N	-12,09	-77,03
Lima	Centenario Oficinas SAC	SI13N	-12,09	-77,03
Lima	Grupo ASM SAC	SI19N	-12,10	-77,04
Lima	La venturosa	SI12N	-12,09	-77,05
Lima	Picasa SAC	JM02N	-12,07	-77,05
Lima	Soligestion Perú SAC	LI01N	-12,05	-77,05
	Inversiones Inmobiliarias del		•	·
Lima	Caucaso SA	SI17N	-12,09	-77,02
Lima	La Mar Investments SAC	MF05N	-12,11	-77,04
Lima	Centro empresarial Nuevo Mundo IV SAC	MF04N	-12,13	-77,02
Lima	Flat Canevaro SAC	LC01N	-12,08	-77,03
Lima	Constructora Piedra Dorada SAC	MF03N	-12,10	-77,04
Lima	Wescon Ingeniería y Construcción SAC	JM01N	-12,06	-77,03
Lima	Inversiones Erre SAC	SI11N	-12,10	-77,03
Lima	Inmobiliaria Brick SAC	MM01N	-12,09	-77,05
Lima	Inmobiliaria Cosas SAC	SI10N	-12,09	-77,02
Lima	Inmobiliaria Alcar SA	SI09N	-12,09	-77,02
Lima	Desarrollo Pal 400 SAC	SI08N	-12,09	-77,03
Lima	Inversiones Lexon SAC	SI07N	-12,10	-77,03
Lima	Inmobiliaria San Vicenzo SAC	SI06N	-12,09	-77,05
Lima	Viva GYM	SI05N	-12,09	-77,02
Lima	ASB Contratistas Generales	SI04N	-12,09	-77,02
Lima	Mota Engil SAC	MF02N	-12,12	-77,02
Lima	Inmobiliaria e Inversiones Palo Verde SAC	SI03N	-12,09	-77,02
Lima	CYJ Constructores / Vitra Inmobiliaria SAC	SS03N	-12,10	-76,97
Lima	Universidad de Ingeniería y Tecnología	BA01N	-12,13	-77,02
Lima	Madrid Ingenieros SAC	SS01N	-12,14	-77,01
Lima	Gallegos Casabonne Arango Quesada	MF01N	-12,12	-77,02
Lima	Proyecto Edifica	SI01N	-12,09	-77,03
Lima	Inmobiliaria Artigal SAC	SI29N	-12,10	-77,01
Lima	Fondo de inversión en bienes raíces larrain vial Colliers II-FI	BO05N	-12,10	-76,99

Lima	Consorcio Sacyr Saceem II	BE01N	-12,06	-77,12
Lima	Ingeniería de la Construcción SAC	LC05N	-12,08	-77,03
Lima	Inversiones Aramis SAC	MF10N	-12,12	-77,02
Lima	FT Constructores SAC	LC04N	-12,07	-77,03
Lima	Constructora Franco SRL	MM02N	-12,09	-77,06
Lima	Banco Santander Perú S.A.	SI28N	-12,09	-77,02
Lima	Banco de la Nación	BO04N	-12,08	-77,00
Lima	Urbana Perú	JM03N	-12,06	-77,04
Lima	Constructora e Inmobiliaria Nicole y Sebastián Jeri SAC	BO03N	-12,09	-76,98

Anexo 7 *Estaciones del SASPE*

Región	Nombre	Tipo	Latitud	Longitud	
Tacna	Los palos	Estación	-18,30	-70,44	
Tacha	Los paios	acelerométrica	-10,50	70,44	
Tacna	Chuschi	Estación	-18,24	-70,53	
raona	Gridsom	acelerométrica	10,24	70,00	
Tacna	Faro Boca del río	Estación	-18,15	-70,67	
raona	Taro Bood del lio	acelerométrica	10,10	70,07	
Tacna	Vila Vila	Estación	-18,11	-70,72	
raona	viid viid	acelerométrica	10,11	70,72	
Tacna	Sama	Estación	-18,00	-70,85	
raona	Gama	acelerométrica	10,00	70,00	
Tacna	Ite	Estación	-17,86	-70,96	
raona		acelerométrica	,00	,	
Tacna	La Yarada	Estación	-18,13	-70,56	
100110		repartidora	. 0, . 0	7 0,00	
Tacna	Alto de la	Estación	-18,08	-70,35	
	Alianza	repartidora	,	1 2,23	
Tacna	COER Tacna	Centro de	-18,04	-70,26	
		procesamiento	,.	1 5,25	
Moquegua	Muelle Engie	Estación	-17,78	-71,18	
. 1. 1911	3 -	acelerométrica	, -	7 1,10	
Moquegua	Punta Coles	Estación	-17,70	-71,37	
1,13,1		acelerométrica	, - 	,5.	
Moquegua	Muelle PCC	Estación	-17,54	-71,35	
1,1910		acelerométrica	,-	1,55	

Moquegua	Chagllianto	Estación acelerométrica	-17,31	-71,47
Moquegua	Repetidora de Ilo	Estación repartidora	-17,73	-71,06
Moquegua	Repetidora Moquegua	Estación repartidora	-17,25	-70,95
Moquegua	COER Moquegua	Centro de procesamiento	-17,20	-70,94
Arequipa	Corio	Estación acelerométrica	-17,26	-71,62
Arequipa	Punta de Bombom	Estación acelerométrica	-17,16	-71,78
Arequipa	Dean Valdivia	Estación acelerométrica	-17,14	-71,82
Arequipa	Mejía	Estación acelerométrica	-17,10	-71,90
Arequipa	Islay	Estación acelerométrica	-17,01	-72,11
Arequipa	Costanera	Estación acelerométrica	-16,93	-72,18
Arequipa	Punta de Hornillas	Estación acelerométrica	-16,87	-72,28
Arequipa	Quilca	Estación acelerométrica	-16,71	-72,43
Arequipa	Samuel Pastor	Estación acelerométrica	-16,64	-72,66
Arequipa	La Chira	Estación acelerométrica	-16,51	-72,92
Arequipa	Caleta Chira	Estación acelerométrica	-16,49	-73,00
Arequipa	La Planchada	Estación acelerométrica	-16,41	-73,22
Arequipa	Pescadores	Estación acelerométrica	-16,38	-73,29
Arequipa	La Bodega	Estación acelerométrica	-16,24	-73,49
Arequipa	Punta Ático	Estación acelerométrica	-16,23	-73,69

Arequipa	Lobos	Estación	-16,13	-73,86
Aicquipa	20003	acelerométrica	10,10	70,00
Arequipa	Punta Blanca	Estación	-16,03	-74,01
		acelerométrica Estación		
Arequipa	Angostura	acelerométrica	-15,89	-74,05
		Estación		
Arequipa	Faro Chala	acelerométrica	-15,87	-74,23
		Estación		
Arequipa	Atiquipa	acelerométrica	-15,78	-74,38
Aroquina	Yauca	Estación	-15,66	-74,54
Arequipa	rauca	acelerométrica	-15,66	-74,54
Arequipa	Chaviña	Estación	-15,61	-74,67
, oqu.pa	Gnavina	acelerométrica		,0.
Arequipa	Punta Lomas	Estación	-15,57	-74,85
		acelerométrica		·
Arequipa	Tres Hermanas	Estación	-15,44	-75,05
		acelerométrica Estación		
Arequipa	Tía María	repartidora	-17,01	-71,78
		Estación		
Arequipa	Matarani	repartidora	-16,94	-72,08
		Estación	40.40	
Arequipa	Cerro gloria	repartidora	-16,46	-71,70
Arequipa	Toro	Estación	-16,55	-72,59
Arequipa	1010	repartidora	-10,55	-72,59
Arequipa	Camaná	Estación	-16,61	-72,75
		repartidora	,	,
Arequipa	Ocoña	Estación	-16,42	-73,13
		repartidora		
Arequipa	COER Arequipa	Centro de procesamiento	-16,37	-71,54
		Estación		
lca	Parque Eólico	acelerométrica	-15,40	-75,09
1	Morazza	Estación	45.00	75.40
lca	Marcona Sur	acelerométrica	-15,36	-75,18
lca	Shougan	Estación	-15,29	-75,16
Ισα	Chougan	acelerométrica	10,20	70,10

		Estación		
lca	Faro San Nicolas	acelerométrica	-15,25	-75,25
Ica	Marcona Norte	Estación	-15,14	-75,36
		acelerométrica		
lca	Puerto Caballas	Estación	-14,95	-75,44
		acelerométrica		
lca	Lomas	Estación	-14,76	-75,72
		acelerométrica		
lca	Punta Lomitas	Estación	-14,71	-75,85
		acelerométrica		
lca	Infiernillos	Estación	-14,63	-75,88
		acelerométrica		
lca	Concha	Estación	-14,50	-75,95
		acelerométrica		
Ica	Punta Grande	Estación	-14,34	-76,10
		acelerométrica		
Ica	Isla	Estación	-14,26	-76,20
	Independencia	acelerométrica	, -	
Ica	Punta Carretas	Estación	-14,09	-76,27
		acelerométrica		
Ica	Paracas	Estación	-13,82	-76,33
		acelerométrica		
Ica	Isla Chincha	Estación	-13,64	-76,40
		acelerométrica		
Ica	Zamaca	Estación	-14,67	-75,61
		repetidora		
Ica	Santiago	Estación	-14,33	-75,68
		repetidora		
lca	Guadalupe	Estación	-13,99	-75,78
		repetidora		
Ica	Muni Chincha	Estación	-13,41	-76,13
		repetidora		
lca	COER Arequipa	Centro de	-14,07	-75,73
		procesamiento		
Lima	Nuevo Cañete	Estación	-13,17	-76,34
		Acelerométrica		
Lima	Faro Cerro Azul	Estación	-13,03	-76,48
		Acelerométrica		

		Estación		
Lima	Isla Asia	Acelerométrica	-12,79	-76,62
Lima	Cerro Azul	Estación Repetidora	-12,91	-76,43
Lima	Puerto Viejo	Estación	-12,61	-76,67
		Acelerométrica		
Lima	Punta Lobos	Estación	-12,50	-76,79
		Acelerométrica		
Lima	Pucusana	Estación Repetidora	-12,46	-76,77
Lima	Isla Pachacamac	Estación	-12,30	-76,90
		Acelerométrica	12,00	
Lima	La Chira	Estación	-12,18	-77,03
		Acelerométrica	, -	
	Centro de			
Lima	operaciones de	Central de control nacional	-12,17	-77,00
	Emergencia		,	
	Nacional			
	Instituto	Central de -12,06		-76,96
Lima	Geofísico del		-12,06	
	Perú	F		
Lima	Isla San Lorenzo	Estación	-12,07	-77,23
		Acelerométrica		
Lima	Faro Ancon	Estación	-11,77	-77,19
		Acelerométrica		
Lima	Isla Hormigas	Estación Acelerométrica	-11,95	-77,73
Limo	Faro punta	Estación	-11,58	-77,28
Lima	Chancay	Acelerométrica		
Lima	Isla Mazorca	Estación	-11,38	-77,74
Lillia		Acelerométrica		
Lima	San Fernando	Estación	-11,32	-77,45
Liiia		Acelerométrica		
Lima	Salinas Huacho	Estación	-11,23	-77,61
		Acelerométrica		
Lima	Isla Don Martin	Estación	-11,02	-77,67
		Acelerométrica		,-
Lima	Playa la isla	Estación	-10,81	-77,74
		Acelerométrica		

Lima	Suches	Estación	-11,96	-76,54
		Acelerométrica		
Ancash	Litera	Estación Acelerométrica	-10,60	-77,88
Ancash	Redondos	Estación Acelerométrica	-10,49	-77,96
Ancash	Gramadal	Estación Acelerométrica	-10,34	-78,04
Ancash	Las Zorras	Estación Acelerométrica	-10,27	-78,08
Ancash	Punta Cabeza de Lagarto	Estación Acelerométrica	-10,10	-78,18
Ancash	Celda Huarmey	Estación Repetidora	-10,09	-78,12
Ancash	Culebras	Estación Acelerométrica	-9,95	-78,22
Ancash	La Gramita	Estación Acelerométrica	-9,72	-78,28
Ancash	Punta el Huaro	Estación Acelerométrica	-9,62	-78,36
Ancash	Celda Casma	Estación Repetidora	-9,61	-78,29
Ancash	Faro Morro Calvario	Estación Acelerométrica	-9,46	-78,39
Ancash	Buena Vista Alta	Estación Acelerométrica	-9,44	-78,17
Ancash	Tortugas	Estación Acelerométrica	-9,32	-78,38
Ancash	Samanco	Estación Acelerométrica	-9,26	-78,50
Ancash	Isla Blanca	Estación Acelerométrica	-9,10	-78,62
Ancash	Cerro la Cruz	Estación Repetidora	-9,06	-78,62
Ancash	Cordillera Negra	Estación Repetidora	-9,58	-77,66
Ancash	Cerro la Cruz	Estación Repetidora	-9,06	-78,62

	Repetidora	Estación		
Ancash	Huaraz	Repetidora	-9,44	-77,51
	005011	Estación	2.50	
Ancash	COER Huaraz	Repetidora	-9,52	-77,52
Lalibartad	Cerro Negro	Estación	9.04	70.04
La Libertad	Cerro Negro	Acelerométrica	-8,94	-78,64
La Libertad	Huaca Corral	Estación	-8,81	-78,62
La Libertad	Tidaca Corrai	Repetidora	-0,01	-70,02
La Libertad	Pampas El	Estación	-8,64	-78,63
La Libertaa	Jaime	Acelerométrica	0,04	70,00
La Libertad	Pampas del Tizal	Estación	-8,55	-78,74
La Libertaa	r ampao doi mzai	Acelerométrica	0,00	70,71
La Libertad	Isla Guañape	Estación	-8,56	-78,96
La Libertaa		Acelerométrica	3,00	7 0,00
La Libertad	Faro Morro	Estación	-8,22	-78,97
	Carretas	Acelerométrica	5,==	. 5,51
La Libertad	COER La	Centro de	-8,04	-79,95
	Libertad	procesamiento	3,2 1	,
La Libertad	Huanchaco	Estación	-8,05	-79,13
		Acelerométrica		
La Libertad	EL brujo	Estación	-7,91	-79,30
	,	Acelerométrica	,	ŕ
La Libertad	Isla Macabi	Estación	-7,81	-79,50
		Acelerométrica	,	,
La Libertad	Puerto Malabrigo	Estación	-7,70	-79,45
	0	Acelerométrica		
La Libertad	Rio Seco	Estación	-7,59	-79,32
		Repetidora		
La Libertad	Faro Punta	Estación	-7,41	-79,58
	Pacasmayo	Acelerométrica		
Lambayeque	Cherrepe	Estación	-7,14	-79,68
		Acelerométrica		
Lambayeque	Eten Puerto	Estación	-6,94	-79,85
		Acelerométrica		
Lambayeque	San José	Estación	-6,76	-79,97
		Acelerométrica		
Lambayeque	La Noria	Estación	-6,59	-80,16
		Acelerométrica		

	COER	Centro de		
Lambayeque	Lambayeque	procesamiento	-6,77	-79,81
D :	Isla Lobos de	Estación	0.40	00.05
Piura	tierra	Acelerométrica	-6,43	-80,85
Piura	Playa	Estación	6.17	90.03
Piura	Reventazón	Acelerométrica	-6,17	-80,93
Piura	Faro la Punta	Estación	-6,07	-81,09
Fluia	Negra	Acelerométrica	-0,07	-01,09
Piura	Repetidora la	Estación	-6,09	-80,89
Fluia	Mina	Repetidora	-0,09	-00,09
Piura	La Mina	Estación	-6,01	-80,83
ridia	La IVIII la	Repetidora	0,01	00,00
Piura	Illescas	Estación	-5,58	-81,01
ridia	Ilicacaa	Repetidora	3,30	01,01
Piura	Faro Bayovar	Estación	-5,79	-81,06
ridia	i aro Bayovar	Acelerométrica	0,70	01,00
Piura	Miramar	Estación	-5,49	-80,82
riara	Willamai	Acelerométrica		00,02
Piura	Isla Foca	Estación	-5,52	-81,20
	10.0.1	Acelerométrica		,
Piura	Faro Punta	Estación	-5,07	-81,12
	Telégrafo	Acelerométrica	- , -	- ,
Piura	La Bocana	Estación	-4,92	-81,12
		Acelerométrica	,	,
Piura	La Brea	Estación	-4,59	-81,29
		Acelerométrica		
Piura	Cabo Blanco	Estación	-4,25	-81,23
		Acelerométrica		
Piura	Máncora	Estación	-4,10	-81,05
		Acelerométrica		
Piura	El Alto	Estación	-4,26	-81,21
		Repetidora		
Piura	Santa Lucia	Estación	-4,68	-81,05
		Repetidora		
Piura	Chocan	Estación	-5,16	-80,96
		Repetidora		
Piura	COER Piura	Centro de	-5,16	-80,69
		Procesamiento		

Tumbes	Canoas	Estación Acelerométrica	-3,90	-80,88
Tumbes	Cancas	Estación Repetidora	-3,97	-80,91
Tumbes	Los Pozos	Estación Repetidora	-3,70	-80,68
Tumbes	Faro Contralmirante Villar	Estación Acelerométrica	-3,68	-80,68
Tumbes	La Jota	Estación Acelerométrica	-3,61	-80,54
Tumbes	Faro Punta Capones	Estación Acelerométrica	-3,41	-80,31
Tumbes	COER Tumbes	Centro de Procesamiento	-3,55	-80,43

Anexo 8Estaciones de la red de Banda Ancha de México

Código	Nombre	Estado	Latitud	Longitud
AAIG	Aguascalientes	Aguascalientes	21,96	-102,38
ACIG	Acambay	Estado de México	19,98	-99,88
ANIG	Ahuacatlán	Nayarit	21,05	-104,52
ARIG	Arcelia	Guerrero	18,28	-100,34
BCIG	La Boquilla	Chihuahua	27,54	-105,41
CAIG	El Cayaco	Guerrero	17,04	-100,26
CCIG	Comitán	Chiapas	16,28	-92,13
CGIG	Casa Grandes	Chihuahua	30,36	-107,97
CJIG	Chamela	Jalisco	19,49	-105,04
CMIG	Matías Romero	Oaxaca	17,09	-94,88
CRIG	Cruz Grande	Guerrero	16,73	-99,13
CSIG	Cholx	Sinaloa	26,83	-108,37
DAIG	Dos Arroyos	Guerrero	17,02	-99,65
DHIG	Demacú	Hidalgo	20.30	-99,03
FTIG	Fresnillo de Trujano	Oaxaca	17,90	-98,13
GTIG	Gómez Farias	Tamaulipas	23,06	-99,16
HLIG	Huajuapan	Oaxaca	17,82	-97,80
HPIG	Hidalgo del Parral	Chihuahua	26,93	-105,66
HSIG	Hermosillo	Sonora	29,01	-110,94
HUIG	Huatulco	Oaxaca	15,76	-96,10

				,
IGIG	Irapuato	Guanajuato	20,75	-101,32
LNIG	Linares	Nuevo León	24,89	-99,46
LPIG	La paz	Baja california Sur	24,10	-110,30
LVIG	Laguna verde	Veracruz	19,72	-96,41
MAIG	Mazatlán	Sinaloa	23,18	-106,42
MBIG	Mexicali	Baja california	32,40	-115,19
MCIG	Múzquiz	Coahuila	27,87	-101,48
MEIG	Mezcala	Guerrero	17,92	-99,61
MGIG	Malinaltepec	Guerrero	17,23	-98,63
MMIG	Maruata	Michoacán	18,28	-103,34
MNIG	Monterrey	Nuevo León	25,60	-100,28
MOIG	Morelia	Michoacán	19,64	-101,27
MYIG	Mérida	Yucatán	20,94	-89,63
NZIG	Nacozari	Sonora	30,37	-109,55
OXIG	Oaxaca	Oaxaca	17,07	-96,73
PCIG	Pijijiapan	Chiapas	15,70	-93,21
PDIG	Papasquiaro	Durango	25,04	-105,39
PEIG	Puerto escondido	Oaxaca	15,99	-97,14
PLIG	Platanillo	Guerrero	18,39	-99,50
PNIG	Pinotepa	Oaxaca	16,39	-98,12
PPIG	Popocatépetl	Estado de México	19,06	-98,62
PZIG	El pozo	Ciudad de México	19,32	-99,17
RPIG	Rio Verde	San Luis de Potosí	21,88	-99,98
SCIG	Sabancuy	Campeche	18,96	-91,18
SPIG	San Pedro Mártir	Baja california	31,04	-115,46
SRIG	Santa Rosalía	Baja california sur	27,31	-112,24
SSIG	Sanalona	Sinaloa	24,81	-107,14
TEIG	Tepich	Quintana Roo	20,22	-88,27
TGIG	Tuxtla Gutiérrez	Chiapas	16,77	-93,12
THIG	Tapachula	Chiapas	14,88	-92,29
TJIG	Tijuana	Baja California	32,43	-116,67
TLIG	Tlapa	Guerrero	17,56	-98,56
TOIG	Toxpalán	Oaxaca	18,09	-97,06
TPIG	Tehuacán	Puebla	18,42	-97,36
TSIG	Topolobampo	Sinaloa	25,60	-109,04
TUIG	Tuzandepetl	Veracruz	18,03	-94,42
TXIG	Tlaxiaco	Oaxaca	17,25	-97,76
YAIG	Yautepec	Morelos	18,86	-99,06
YOIG	Yosondúa	Oaxaca	16,85	-97,54

ZAIG	Zacatecas	Zacatecas	22,76	-102,56
ZIIG	Zihuatanejo	Guerrero	17,60	-101,46

Anexo 9Estaciones de la red del Valle de México

Código	Nombre	Estado	Latitud	Longitud
AMVM	Amecameca	Estado de México	19,13	-98,78
AOVM	Álvaro Obregón	Ciudad de México	19,26	-99,32
APVM	Azcapotzalco	Ciudad de México	19,48	-99,20
ATVM	Atlacomulco	Estado de México	19,76	-99,84
AZVM	Atizapán	Estado de México	19,58	-99,28
BJVM	Benito Juárez	Ciudad de México	19,37	-99,17
CHVM	Chichinautzin	Morelos	19,08	-99,14
CIVM	Cerro de Cilcuayo	Ciudad de México	19,10	-98,98
CJVM	Cuajimalpa	Ciudad de México	19,36	-99,28
COVM	Coyoacán	Ciudad de México	19,35	-99,15
CTVM	Cuauhtémoc	Ciudad de México	19,44	-99,16
GMVM	Gustavo A. Madero	Ciudad de México	19,49	-99,11
ICVM	Iztacalco	Ciudad de México	19,38	-99,09
INVM	ININ	Estado de México	19,29	-99,38
IPVM	Iztapalapa	Ciudad de México	19,34	-99,09
MAVM	Malinalco	Estado de México	18,95	-99,49
MCVM	Magdalena Contreras	Ciudad de México	19,32	-99,25
MHVM	Miguel Hidalgo	Ciudad de México	19,40	-99,20
MPVM	Milpa Alta	Ciudad de México	19,20	-99,01
MZVM	Mezontepec	Ciudad de México	19,18	-99,22
PBVM	Peñón de los baños	Ciudad de México	19,44	-99,08
PTVM	Pico Tres Padres	Estado de México	19,59	-99,11
THVM	Tláhuac	Ciudad de México	19,31	-98,97
TLVM	Tlalpan	Ciudad de México	19,20	-99,15
TOVM	Toluca	Estado de México	19,28	-99,67
TXVM	Texcoco	Estado de México	19,43	-98,91
VRVM	Venustiano Carranza	Ciudad de México	19,41	-99,11
VTVM	Valle de Teotihuacán	Estado de México	19,77	-98,77
XCVM	Xochimilco	Ciudad de México	19,25	-99,11

ZUVM	Zumpango	Estado de México	19,82	-99,07
------	----------	------------------	-------	--------

Anexo 10 Red de GPS del CSN de Chile

Código	Nombre	Instalación	Receptor	Institución
PWIL	Puerto Wiliams	01/11/2013	Trimble NetR9	CSN
CSOM	Cerro Sombrero	23/10/2013	Trimble NetR9	CSN
PTAR	Punta Arenas	18/12/2014	Trimble NetR9	CSN
IRSC	Isla Riesco	04/09/2016	Trimble NetR9	CSN
PNAT	Puerto Natales	04/11/2016	Trimble NetR9	CSN
CAST	Cerro Castillo	26/10/2013	Trimble NetR9	CSN
VOHG	Villa O'Higghins	14/02/2014	Trimble NetR9	CSN
CCHR	Cochrane	08/06/2014	Trimble NetR9	CSN
XPLO	Exploradores	03/05/2016	Trimble NetR9	CSN
TPYU	Puyuhuapi	03/01/2016	Trimble NetR9	CSN
FUTF	Futaleufú	17/02/2015	Trimble NetR9	CSN
CTLR	Cerro Tolar	13/07/2007	Trimble NetR9	CALTECH
QLLN	Quellón	24/07/2013	Trimble NetR9	CSN
LNCM	Loncomilla	15/03/2017	Trimble NetR9	CSN
MUER	Los muermos	09/09/2016	Trimble NetR9	CSN
PRTO	Petrohué	13/02/2015	Trimble NetR9	CSN
PAJA	Tenencia Pajaritos		Trimble NetR9	CSN
CURR	Curriñe	15/01/2016	Trimble NetR9	CSN
PGLL	Panguipulli	20/01/2016	Trimble NetR9	CSN
CRRH	Curarrehue	26/07/2013	Trimble NetR9	CSN
SAAV	Puerto Saavedra	27/06/2015	Trimble NetR9	CSN
TMCO	Temuco		Trimble NetR9	CSN
LNQM	Lonquimay		Trimble NetR9	CSN
IMCH	Isla Mocha	25/08/2013	Trimble NetR9	CSN
PECL	Parque Eólico Lebu		Trimble NetR9	CSN
ANTC	Antuco		Trimble NetR9	CSN
PLVP	Punta Lavapié		Trimble NetR9	CSN
HLPN	Faro Hualpén	12/09/2015	Trimble NetR9	CSN
CLL1	Chillán		Trimble NetR9	CSN
VITA	Vegas de Itata	11/03/2015	Trimble NetR9	CSN
QLAP	Quella	10/03/2010	Trimble NetR9	CSN
MAUL	Maule - Colbún	09/04/2003	Trimble Netrs	ENS
SJAV	San Javier	25/06/2033	Trimble Netrs	ENS

CONS	Constitución	21/04/2004	Trimble Netrs	CSN
HLN2	Hualañé	10/10/2013	Trimble NetR9	CSN
ILOC	lloca	10/03/2010	Trimble NetR9	CSN
SBLL	Sierras de Bellavista	13/01/2013	Trimble NetR9	CSN
PCMU	Pichilemu	23/04/2015	Trimble NetR9	CSN
LEMU	Pichilemu	07/03/2010	Trimble Netrs	ENS
NAVI	Navidad	10/03/2010	Trimble NetR9	CSN
CHDA	Cuesta Chada	30/10/2015	Trimble NetR9	CSN
RCSD	Rocas de Santo domingo	14/10/2008	Trimble Netrs	CSN
TLGT	Talagante	22/11/2014	Trimble NetR9	CSN
LMEL	Las Melosas	12/04/2012	Trimble NetR8	CALTECH
SALF	San Alfonso	•••	Trimble Netrs	CSN
VZCH	Las Vizcachas	•••	Trimble NetR9	CSN
UAIB	Universidad Adolfo Ibáñez	18/06/2015	Trimble NetR9	CSN
DGF1	Geofísica	05/11/2002	Trimble NetR9	CSN
VNEV	Valle Nevado	08/01/2003	Ashtech UZ-12	DGF
SMAR	Santa Martina		Trimble NetR9	CSN
QTAY	Quintay	14/01/2016	Trimble NetR9	CSN
TRPD	Torpederas	11/08/2016	Trimble NetR9	CSN
VALN	Valparaíso	11/05/2005	Trimble NetR9	CSN
ROBL	Cerro el Roble	28/10/2008	Trimble NetR9	CSN
PORT	Portillo	15/12/2002	Trimble Netrs	DGF
ZAPA	Zapallar	07/03/2010	Trimble NetR9	CSN
CTPC	Catapilco	08/10/2015	Trimble NetR9	CSN
LVIL	Los vilos	28/07/2003	Trimble Netrs	CSN
SLMC	Salamanca	29/07/2003	Trimble Netrs	DGF
CNBA	Canela Baja	21/11/2006	Trimble Netrs	ENS
CMBA	Combarbalá	08/05/2007	Trimble Netrs	ENS
EMAT	Caleta el Maitén	28/06/2007	Trimble Netrs	CSN
PEDR	Pedregal	21/11/2006	Trimble Netrs	ENS
PFRJ	Parque Fray Jorge	18/11/2006	Trimble Netrs	CSN
OVLL	Ovalle	29/04/2004	Trimble Netrs	ENS
PVCA	Punta Lengua de Vaca	27/01/2016	Trimble NetR9	CSN
BTON	Tongoy	16/11/2006	Trimble Netrs	ENS
TOLO	Tololo	29/05/2007	Trimble Netrs	ENS
JUNT	Juntas del toro	16/01/2008	Trimble NetR9	ENS
LSCH	La serena	20/11/2006	Trimble Netrs	CSN
LHOR	Los hornos	20/11/2016	Trimble NetR9	CSN
SILL	La silla	13/06/2008	Trimble NetR9	CSN

CRZL	Carrizalillo	15/11/2008	Trimble Netrs	CSN
TRST	Tránsito	09/02/2014	Trimble NetR9	CSN
VALL	Vallenar	12/06/2008	Trimble Netrs	ENS
HSCO	Huasco	27/09/2017	Trimble NetR9	CSN
LLCH	Llanos de Challe	07/02/2014	Trimble NetR9	CSN
TAMR	Tierra Amarilla	11/09/2013	Trimble NetR9	CSN
UDAT	Universidad de Atacama	02/10/2014	Trimble NetR9	CSN
BING		07/09/2018	Trimble NetR9	CSN
MRCG	Bahía inglesa	04/02/2014	Trimble NetR9	CSN
INCA	Maricunga	04/02/2014		
	Inca de oro		Trimble NetR9	CSN
FMCO	Flamenco		Trimble NetR9	CSN
PAZU	Pan de azúcar	04/09/2013	Trimble NetR9	CSN
CIFU	Caleta Cifuncho	22/11/2016	Trimble NetR9	CSN
TTAL	Taltal	19/05/2014	Trimble NetR9	CSN
CGUA	Mina Guanaco	13/09/2013	Trimble NetR9	CSN
PRNL	Cerro Paranal	29/06/2014	Trimble NetR9	CSN
CRIS	Cerro los cristales	24/05/2014	Trimble NetR9	CSN
UCNF	U. Católica del norte	29/11/2003	Trimble Netrs	IPGP
JRGN	Punta Jorgino	05/11/2005	Trimble Netrs	CALTECH
PMEJ	Mejillones	29/11/2003	Trimble Netrs	IPGP
VLZL	Valenzuela	26/09/2006	Trimble Netrs	CALTECH
CJNT	Chajnantor	31/10/2005	Trimble NetR8	CALTECH
SPAT	San Pedro de Atacama	03/06/2015	Trimble NetR9	CSN
CBAA	Cordón Barros Arana	01/10/2006	Trimble Netrs	CALTECH
SRGD	Sierra Gorda	29/09/2006	Trimble Netrs	CALTECH
MCLA	Michilla	03/11/2005	Trimble NetR9	CALTECH
CDLC	Cerro la Cruz	05/10/2006	Trimble Netrs	CALTECH
RADO	Radomiro Tomic	08/12/2007	Trimble Netrs	CSN
ELOA	Aduana el Loa	02/08/2018	Trimble NetR9	CSN
CRSC	Cerro Carrasco	08/11/2005	Trimble NetR8	CALTECH
ROB1	Cerro el Roble	13/01/2008	Trimble NetR9	CSN
CLLA	Challacolla	01/08/2001	Trimble Netrs	CSN
GTA1	TA01		Trimble NetR9	CSN
PICC	Pica	04/11/2007	Trimble Netrs	CSN
UAPF	U. Arturo Prat	21/09/1999	Trimble Netrs	CSN
CGTC	Cerro Guantaca	22/08/2010	Trimble Netrs	CALTECH
			1	i l
FBAQ	Fuerte Baquedano	23/10/23	Trimble NetR9	IRD

PSGA	Pisagua	29/03/2007	Topcon GB- 1000	IPGP
A T 181	O Ataia = -	00/40/0005		CON
ATJN	Cerro Atajaña	26/10/2005	Trimble NetR9	CSN
MNMI	Miñemiñe	28/03/2008	Topcon GB-	IPGP
IVIIAIVII	Willienille	20/03/2000	1000	
PTRO	Petrohué	13/02/2015	Trimble NetR9	CSN
SURI	Surire	14/01/2017	Trimble NetR9	CSN
CMRC	Cerro Camaraca	28/06/2018	Trimble NetR9	CSN
IARC	Isla Alacrán		Trimble NetR9	CSN
UTAR	U. Tarapaca	10/05/2005	Trimble Netrs	CSN
CHYT	Aeropuerto de Chacayuta	24/04/2014	Trimble NetR9	CSN
PCCL	Poconchile	20/10/2005	Trimble NetR9	CALTECH
PTRE	Putre	23/10/2005	Trimble NetR9	CALTECH
ARJF	Juan Fernandez		Trimble NetR9	CSN
CHM2	Chusmiza	16/07/2007	Trimble Netrs	CALTECH
FREI	Base Frei		Trimble NetR9	CSN

Anexo 11Red de sismógrafos del CSN de Chile

Código	Red	Digitalizador	Marca y modelo
MG01	C1	Q330 Triillium 120	
MG02	C1	Q330	Triillium 120
MG03	C1	Q330	Triillium 120
MG04	C1	Q330	Triillium 120
MG05	C1	Q330	Triillium 120
GO10	С	Q330	T240
GO09	С	Q330	T240
GO08	С	Q330	T240
AY03	C1	Q330	Triillium 120
AY02	C1	Q330	Triillium 120
COYC	G	Q330HR	STS-1/STS-2
AY05	C1	Q330	Triillium 120
AY01	C1	Q330	Triillium 120
LL02	С	Earth Data	Lenarz LE-3D/5
GO07	С	Q330	STS-2
LL07	C1	Q330	Triillium 120
LL01	C1	Q330	Triillium 120
LL06	C1	Q330	Triillium 120
LL05	C1	Q330	Triillium 120

		0000	
LL03	C1	Q330	Triillium 120
LL04	C1	Q330	Triillium 120
LR05	C1	Q330	Triillium 120
LR04	C1	Q330	Triillium 120
LR02	C1	Q330	Triillium 120
LR03	C1	Q330	Triillium 120
GO06	С	Q330	T240
LC09	C1	Q330	Triillium Compact 120s
LC01	C1	Q330	Triillium 120
LC02	C1	Q330	Triillium 120
BI04	С	Q330	Triillium 120
BI05	C1	Q330	Triillium 120p
BI02	C1	Q330	Triillium 120p
BI06	C1	Q330	CMG-40T
ML02	C1	Q330	Triillium 120p
GO05	С	Q330	T240
BO02	C1	Q330	Triillium 120
BO03	C1	Q330	Triillium 120
BO01	C1	Q330	Triillium 120
BO04	C1	Q330	Triillium 120
MT01	C1	Q330	Triillium 120p
VA05	C1	Q330	Triillium 120
MT09	C1	Q330	Triillium 120p
MT12	C1	Q330s	STS-2.5
LMEL	С	Q330	STS-2
MT13	C1	Q330	Triillium 120
MT15	C1	Q330S+	Triillium 120QA
MT17	C1	Q330S+	Triillium 120p
MT08	C1	Q330	Triillium 120
MT04	C1	Q330	Triillium 120
MT03	C1	Q330	Triillium 120
FAR1	С	Q330	Triillium 40
MT18	C1	Q330	Triillium 120
MT16	C1	Q330S+	Triillium 120
STL	C1	Q330	Triillium 120
MT14	C1	Q330S	STS-2.5
MT10	C1	Q330S	STS-2.5
MT05	C1	Q330	Triillium 120
MT02	C1	Q330	Triillium 120

PEL	G	Q330HR	STS-1
VA01	C1	Q330	Triillium 120
MT07	C1	Q330	Triillium 120
VA03	C1	Q330	Triillium 120
VA06	C1	Q330	Triillium 120
CO04	C1	Q330	Triillium 120
CO02	C1	Q330	Triillium 120
CO03	C1	Q330	Triillium 120
CO06	C1	Q330	Triillium 120
GO04	С	Q330	T240
CO05	C1	Q330	Triillium 120
CO01	C1	Q330	Triillium 120p
CO10	C1	Q330	Triillium 120s
LCO	IU	Q680	STS1
AC05	C1	Q330	Triillium 120
AC04	C1	Q330	Triillium 120
GO03	С	Q330	T240
AC06	C1	Q330	Triillium 120P
AC02	C1	Q330	Triillium 120P
AC01	C1	Q330	Triillium 120P
GO02	С	Q330	T240
PB14	СХ	Earth Data PS6- 24	STS2
PB19	CX	Q330HR	STS-2.5
PB10	CX	Q330HR	STS-2
PB15	CX	Q330HR	STS-2
AF01	C1	Q330	Triillium 120P
LVC	IU	Q330	STS-1
PB06	CX	Q330	STS-2
PB05	CX	Q330	STS-2
PB04	CX	Q330	STS-2
PB03	CX	Q330	STS-2
PB05	CX	Q330HR	STS-2
PB07	CX	Q330	STS-2
PB02	CX	Q330	STS-2
PB01	CX	Q330	STS-2
PATCX	CX	Q330	STS-2
TA01	C1	Q330	Triillium 120P
TA02	C1	Q330	Triillium 120P
<u> </u>	I		

HMBCX	CX	Q330	STS-2
PB08	CX	Q330	STS-2
PB11	CX	Q330HR	STS-2
GO01	С	Q330	T240
PSGCX	CX	Q330	STS-2
MNMCX	CX	Q330	STS-2
AP02	C1	Q330	Triillium 120
AP12	CX	Q330HR	STS-2
AP01	C1	Q330	Triillium 120P
PB16	CX	Q330HR	STS-2
PB18	CX	Q330HR	STS-2
VA04	C1	Q330	Triillium 120
VA02	C1	Q330	Triillium 120

Anexo 12 *Red de Acelerógrafos del CSN de Chile*

Código	Red	Digitalizador	Marca y modelo
AP01	C1	Q330	CMG-5T
PB16	CX	Q330HR	Epi
ARCH	С	Sara	Episensor FBA
PB12	CX	Q330HR	Epi
MNMCX	CX	Q330	CMG5
PSGCX	CX	Q330	CMG5
GO01	С	Q330	Episensor
PB01	CX	Q330HR	Epi
PB01	CX	Q330	Epi
TA02	C1	Q330	CMG-5T
HMBCX	CX	Q330	CMG-5
TA01	C1	Q330	CMG-5T
PATCX	CX	Q330	CMG-5
PB01	CX	Q330	Epi
PB02	CX	Q330	Epi
PB07	CX	Q330	Epi
PB09	CX	Q330	Epi
PB03	CX	Q330	Epi
PB04	CX	Q330	Epi
PB06	CX	Q330	Epi
PB05	СХ	Q330	Epi

PB15	CX	Q330HR	Epi
PB10	CX	Q330HR	Epi
PB14	CX	Earth Data PS6-24	Epi
GO02	С	Q330	Episensor
AC01	C1	Q330	CMG-5T
CRCH	С	Earth Data	Episensor FBA
AC02	C1	Q330	CMG-5T
VA02	C1	Q330	CMG-5T
AC03	C1	Q330	CMG-5T
GO03	С	Q330	Episensor
AC04	C1	Q330	CMG-5T
AC05	C1	Q330	CMG-5T
CO01	C1	Q330	CMG-5T
GO04	С	Q330	Episensor
CO03	C1	Q330	CMG-5T
CO02	C1	Q330	CMG-5T
CO04	C1	Q330	CMG-5T
VA03	C1	Q330	CMG-5T
ROC1	С	Q330	Episensor
VA01	C1	Q330	CMG-5T
PEL	G	Q330HR	Episensor
MT02	C1	Q330	CMG-5T
FAR1	С	Q330	Episensor
MT05	C1	Q330	CMG-5T
STL	C1	Q330	CMG-5T
DG01	С	Q330	Episensor
FSR	С	Earth Data	Episensor FBA
RCDM	С	Earth Data	Episensor FBA
ME03	C1	Q330	Episensor
ANTU	С	Earth Data	Episensor
VA04	C1	Q330	CMG-5T
LMEL	С	Q330	Episensor
MT01	C1	Q330	CMG-5T
CHPI	С	Altus Makalu	Episensor FBA
BO01	C1	Q330	CMG-5T
BO02	C1	Q330	CMG-5T
GO05	С	Q330	Epi
ML02	C1	Q330	CMG-5T
BI02	C1	Q330	CMG-5T

BI03	C1	Q330	CMG-5T
CCSP	С	Etna	Episensor FBA
LAJA	С	Basalt	Episensor FBA
AGCH	С	Earth Data	Episensor FBA
BI04	C1	Q330	CMG-5T
LC01	C1	Q330	CMG-5T
GO06	С	Q330	Epi
LL01	С	Q330	Epi
GO07	С	Q330	Episensor
AYCH	С	Altus Etna	Episensor FBA
GO08	С	Q330	Epi
GO09	С	Q330	Epi
GO10	С	Q330	Epi
MG01	C1	Q330	CMG-5T
MG02	C1	Q330	FBA EST-T
MT07	C1	Q330	CMG-5T
MT09	C1	Q330	CMG-5T
VA05	C1	Q330	CMG-5T
BO03	C1	Q330	CMG-5T
LL07	C1	Q330	CMG-5T
LL03	C1	Q330	CMG-5T
MG04	C1	Q330	FBA ES-T
LL04	C1	Q330	CMG-5T
MG05	C1	Q330	FBA ES-T
LL05	C1	Q330	CMG-5T
LL06	C1	Q330	CMG-5T
CO05	C1	Q330	CMG-5T
RCDM	С	Earth Data	FBA ES-T
LCO	IU	Q680	FBA-23
LVC	IU	Q330	FBA ES-T
CO06	C1	Q330	FBA ES-T
AF01	C1	Q330	FBA ES-T
LC02	C1	Q330	CMG-5T
LR02	C1	Q330	CMG-5T

Anexo 13Red nacional de Sismógrafos de Ecuador

Código Latitud	Longitud	Red	Datalogger model	Sensor model

CABP	-0,39	-80,43	RENSIG - RENAC	Agecodagis KEPHREN	CMG-3ESP
HSPR	-0,35	-78,85	RENSIG - RENAC	Agecodagis KEPHREN	CMG-3ESP
LGCB	0,38	-79,58	RENSIG - RENAC	Agecodagis KEPHREN	CMG-3ESP
PDNS	0,11	-79,99	RENSIG - RENAC	Agecodagis KEPHREN	CMG-3ESP
LITA	0,79	-78,36	RENSIG	Reftek130-01	eentec
URCU	0,44	-78,26	RENSIG	Q330S	FBS-3A
YAHU	0,37	-78,07	RENSIG	Q330S	FBS-3A
IGUA	-1,49	-78,64	RENSIG	VCO analogic	L4C-1D
PAST	-0,7	-78,65	RENSIG	VCO analogic	L4C-1D
PITA	-0,56	-78,43	RENSIG-ROVIG	Reftek130-01	L4C-1D
MAG1	-0,07	-79,77	RENSIG	VCO analogic	L4C-1DC
CHIS	-1,05	-80,73	RENSIG	Reftek130-01	L4C-3D
JAMA	-0,27	-80,21	RENSIG	Reftek130-01	L4C-3D
PECV	-0,78	-80,38	RENSIG	VCO analogic	L4C-3D
OTAV	0,24	-78,45	IRIS	multiple	multiple
PAGY	-0,67	-90,29	IRIS	multiple	multiple
ELAR	-1,05	-80,83	RENSIG - RENAC	Reftek151_120	reftek151-120
ESM1	1,1	-79,16	RENSIG - RENAC	Reftek151_120	reftek151-120
MOMP	0,5	-80,02	RENSIG - RENAC	Reftek151_120	reftek151-120
SFCO	0,66	-80,06	RENSIG - RENAC	Reftek151_120	reftek151-120
ALAU	-2,16	-78,85	RENSIG	Q330S	trilliumcompac
ARDO	-0,99	-77,8	RENSIG	Q330S	trilliumcompac
ARNL	-3,55	-80,07	RENSIG - RENAC	Q330S	trilliumcompac
AUCA	-0,55	-76,9	RENSIG	Q330S	trilliumcompac
BALZ	-1,38	-79,91	RENSIG - RENAC	Q330S	trilliumcompac
BIBL	-2,76	-78,89	RENSIG	Q330S	trilliumcompac
CASC	0,14	-77,34	RENSIG	Q330S	trilliumcompac
GONZ	-4,24	-79,39	RENSIG	Q330S	trilliumcompac
ISPG	-2,97	-80,17	RENSIG - RENAC	Q330S	trilliumcompac
JSCH	-1,72	-78,98	RENSIG	Q330S	trilliumcompac
MILO	-2,28	-79,56	RENSIG	Q330S	trilliumcompac
MONB	-1,77	-79,2	RENSIG	Q330S	trilliumcompac
MORR	-2,64	-80,34	RENSIG	Q330S	trilliumcompac
PAC1	0,27	-78,79	RENSIG	Q330S	trilliumcompac
PIS1	-1,06	-78,39	RENSIG	Q330S	trilliumcompac
PKYU	-1,65	-77,6	RENSIG	Q330S	trilliumcompac
PUYO	-1,49	-78,02	RENSIG	Q330S	trilliumcompac
QUEV	-1,04	-79,3	RENSIG	Q330S	trilliumcompac
SAGO	-1,15	-78,67	RENSIG	Q330S	trilliumcompac
SALI	-2,19	-80,99	RENSIG - RENAC	Q330HRS	trilliumcompac
SEVS	-1,01	-80,05	RENSIG - RENAC	Reftek130-01	trilliumcompac
TAMH	-1,55	-78,78	RENSIG-ROVIG	Q330S	trilliumcompac
TAIS	-2,38	-77,5	RENSIG	Q330S	trilliumcompac
TULM	0,72	-77,79	RENSIG	Q330S	trilliumcompac

VCES	-0,8	-78,39	RENSIG	Q330S	trilliumcompac
YANT	-3,86	-78,76	RENSIG	Q330S	trilliumcompac
ANTC	-0,42	-78,02	RENSIG	Q330HRS	trillium120p
BONI	0,45	-77,53	RENSIG - RENAC	Q330HRS	trillium120p
BOSC	-3,15	-78,5	RENSIG - RENAC	Q330HRS	trillium120p
BV15	0,16	-79,22	RENSIG-RENAC- OCP	Reftek130-01	trillium120p
COHC	-2,47	-79,26	RENSIG	Q330HRS	trililum120p+VSM
CSOL	-1,66	-80,45	RENSIG	Q330HRS	trililum120p
FLF1	-0,36	-79,84	RENSIG	Q330HRS	trililum120p+VSM
GYEB	-2,14	-80,09	RENSIG - RENAC	Q330HRS	trililum120p
ISPT	-1,26	-81,07	RENSIG - RENAC	Reftek130	trillium120p
JIPI	-1,36	-80,56	RENSIG	Q330HRS	trillium120p
LAMO	-4,01	-80,02	RENSIG	Q330HRS	trillium120p
MCRA	-4,37	-79,95	RENSIG	Q330HRS	trillium120p+VSM
ONHA	-3,48	-79,16	RENSIG - RENAC	Q330HRS	trillium120p
PIAT	-0,98	-78,26	RENSIG	Q330HRS	trillium120p+VSM
PPLP	-1,55	-80,78	RENSIG	Q330HRS	trillium120p+VSM
PTGL	0,78	-80,03	RENSIG - RENAC	Q330HRS	trillium120p
RVRD	1,07	-79,39	RENSIG - RENAC	Q330HRS	trillium120p
SNLR	1,29	-78,85	RENSIG	Q330HRS	trillium120p+VSM
ZUMB	-4,86	-79,14	RENSIG - RENAC	Q330HRS	trillium120p

Anexo 14Red nacional de acelerógrafos por RENAC de Ecuador

Ubicación	Marca	Ubicación	Marca
San Lorenzo Base Marítima Naval	Reftek	Tulcán Transelectric	Guralp
Esmeraldas Balao Refinería	Reftek	El Ángel Municipio	Guralp
Esmeraldas Puerto Esmeraldas Inocar	Reftek	Ibarra Cuerpo de Bomberos	Guralp
Tonsupa Conjunto habitacional Cabaplan	Reftek	Ibarra PUCE	Guralp
Atacames casa Sr. Alberto Acosta	Reftek	Atuntaqui Hospital	Guralp
Same Casa Blanca	Reftek	Cotacachi Emaap	Guralp
Mompiche Decameron Mompiche	Guralp	Otavalo Iglesia Francisco Ferrer	Guralp
Pedernales Casa Ing. Oswen Crespo	Reftek	Chontal, sísmica Pacto	Guralp
Bahía Centro Casa Ing. Oswen Crespo	Guralp	Arashá hostería	Guralp
Bahía PUCE	Reftek	Machachi Tras el Café de la Vaca	Reftek
Chone Fundación Padre Fitzgeral	Reftek	Sto. Domingo Transelectric	Guralp
Portoviejo UTM	Reftek	Latacunga Aeropuerto	Guralp
Portoviejo CC.FF.AA.	Reftek	Pujilí Famlia Singaucho	Guralp
Manta Centro de espiritualidad San Pedro Claver	Guralp	Salcedo Hospital	Guralp
Monte Verde	Reftek	Ambato Municipio	Guralp
Punta Blanca	Reftek	Ambato Mercado América	Guralp

La Libertad Transelectric	Guralp	Riobamba Transelectric	Guralp
Pascuales Transelectric	Guralp	Guamote Cuerpo de Bomberos	Guralp
Transelectric Trinitaria	Reftek	Alausí Hospital	Reftek
Estadio Unamuno	Reftek	Universidad Técnica de Guranda	Guralp
Kennedy Transelectric	Reftek	Azogues PUCE	Reftek
Durán Cuerpo de Bomberos	Reftek	Cuenca Transelectric	Reftek
Milagro Transelectric	Guralp	Loja UTPL	Reftek
Playas Capitanía	Reftek	Lago Agrio Cuerpo de Bomberos	Guralp
Machala Universidad	Reftek	Baeza Granja Experimental	Guralp
Machala colibrí	Reftek	Tena Transelectric	Guralp
Quevedo Transelectric	Guralp	Puyo Transelectric	Guralp
Babahoyo UTB	Reftek	Macas Aeropuerto	Guralp
Zamora	Reftek		

Anexo 15 *Red local de acelerógrafos de Quito-Ecuador*

Ubicación	Marca	Marca Ubicación	
Planta de agua Bellavista	Guralp	Cede de jubilados del IESS	Guralp
Escuela Politécnica Nacional	Guralp	Casa Liliana Troncoso	Guralp
Convento de San Francisco	Guralp	Pueblo de Lloa	Guralp
Colegio Militar Eloy Alfaro	Guralp	Círculo Militar	Guralp
Colegio 24 de mayo	Guralp	Casa Ing. Alexandra Alvarado	Guralp
Colegio Zaldumbide	Guralp	Terraza del edificio de ingeniería Civil	Guralp
Planta de agua Rumipamba	Guralp	Administración zonal Quitumbe	Guralp
Casa Ing. Patricio Ramón	Guralp	IRD	Guralp
Casa Tlgo. Vinicio Cáceres	Guralp	Comisariato del ejercito Cossfa sur	Guralp
Administración zonal Eley Alfaro	Guralp	Casa Ing. Hugo Yepes	Guralp

Anexo 16Red nacional de Geodesia de Ecuador

CODIGO	LATITUD	LONGITUD	CODIGO	LATITUD	LONGITUD
ALTB	0,9	-78,55	PPRT	-0,13	-80,22
ARNS	-3,58	-80,08	PSTO	-0,69	-78,64
ARSH	0,08	-79,11	PIS1	-1,08	-78,44
AYAN	-1,97	-80,76	PUYO	-1,52	-78,04
BAEZ	-0,46	-77,89	RIOP	-1,65	-78,65
BAHI	-0,65	-80,4	SLGO	-1,6	-80,85
BILB	-1,45	-78,5	SALF	-0,23	-78,15
CHIS	-1,05	-80,73	SECO	0	-79,87
CHOR	0,04	-80,07	SIDR	-0,38	-80,19
CJMS	0,37	-80,03	TEN1	-0,99	-77,82
COCH	-2,47	-79,26	UIOM	-0,18	-78,46
COLI	-1,55	-80,01	VIHE	-0,63	-79,55

COEC	0,72	-77,79	YTZA	-4,06	-78,95
LUMB	0,14	-77,33	CABP	-0,39	-80,45
ESMR	0,94	-79,72	FLFR	-0,36	-79,84
GGPA	-0,18	-78,59	HSPR	-0,35	-78,85
GMTE	-1,94	-78,71	ISPT	-1,26	-81,07
IBEC	0,35	-78,12	LCSD	-0,91	-80,27
JAM2	-0,21	-80,26	LGCB	0,38	-79,58
MHLA	-1,29	-80,45	MADL	0,26	-79,89
MLEC	-1,07	-80,91	PDNS	0,07	-80,05
MOMP	0,49	-80,05	PTGL	0,78	-80,03
MRO2	-2,64	-80,34	QUEM	-0,24	-78,49
MUIS	0,6	-80,02	RVRD	1,07	-79,39
NORE	-0,92	-75,4	SEVG	-1,06	-79,96
PBLR	0,88	-79,08	SNLR	1,29	-78,84

Anexo 17Red submarina de Japón S-net

Código	Latitud (°E)	Longitud (°N)	Profundidad del agua (m)
N.S1N01	35.8968	141.0535	169
N.S1N02	35.8424	141.3772	1466
N.S1N03	35.7203	141.6451	2591
N.S1N04	35.6036	141.9041	2612
N.S1N05	35.4047	142.0531	5836
N.S1N06	35.2277	141.8692	5567
N.S1N07	35.2773	141.5902	3285
N.S1N08	35.4536	1,413,898	1387
N.S1N09	35.227	141.3068	1583
N.S1N10	35.0925	141.2021	2554
N.S1N11	35.1203	140.9682	1670
N.S1N12	35.0228	140.8091	1239
N.S1N13	34.8788	140.9627	2210
N.S1N14	34.6407	141.0907	4861
N.S1N15	34.5256	141.3512	6569
N.S1N16	34.3686	141.5402	6978
N.S1N17	34.1956	141.3341	6805
N.S1N18	34.262	141.0316	5111
N.S1N19	34.2269	140.7311	3274
N.S1N20	34.2592	140.4159	2513
N.S1N21	34.4231	140.203	2869
N.S1N22	34.6443	140.0906	2512
N.S2N01	378,428	1,413,845	102
N.S2N02	37.6922	141.6387	239
N.S2N03	37.7073	1,419,650	462
N.S2N04	37.6739	142.2975	786

N.S2N05	37.6016	142.6236	1781
N.S2N06	37.5259	1,429,350	2945
N.S2N07	37.429	143.2266	4767
N.S2N08	37.222	143.07	4353
N.S2N09	37.0741	142.8188	4226
N.S2N10	37.0948	142.4979	2417
N.S2N11	37.1931	142.1998	1447
N.S2N12	37.2772	141.879	591
N.S2N13A	37.3003	141.5709	212
N.S2N14	37.0952	141.3703	162
N.S2N15	36.8344	141.3307	264
N.S2N16	36.662	141.5207	874
N.S2N17	36.6337	141.8389	2247
N.S2N17 N.S2N18	36.6824		
		142.1445	2460
N.S2N19	36.5986	142.4389	3425
N.S2N20	36.3885	142.6164	5770
N.S2N21	36.1577	142.5553	6230
N.S2N22	35.9463	142.4014	4492
N.S2N23	35.9677	142.1138	3881
N.S2N24	35.9976	141.7944	2310
N.S2N25	36.0729	141.5095	1887
N.S2N26	36.1442	141.2021	730
N.S3N01	39.4497	142.4578	940
N.S3N02	39.3746	142.7918	1622
N.S3N03	39.3231	143.1206	1890
N.S3N04	39.2958	143.4544	2490
N.S3N05	39.1906	143.7499	4308
N.S3N06	39.0459	143.9305	5440
N.S3N07	38.8308	143.7846	5231
N.S3N08	38.7826	143.4769	2465
N.S3N09	38.7739	143.1437	1779
N.S3N10	38.8668	142.8212	1310
N.S3N11	38.9349	142.4873	1168
N.S3N12	38.8412	142.1816	558
N.S3N13	38.5901	142.1816	573
N.S3N14	38.4993	142.5002	1092
N.S3N15	38.4487	142.8376	1472
N.S3N16	38.4262	143.1703	2420
N.S3N17	38.3978	143.5139	3020
N.S3N18	38.3063	143.781	5528
N.S3N19	38.0594	143.7441	5591
N.S3N20	379,311	143.5675	5225
N.S3N21	379,713	143.2454	2779
N.S3N22	379,838	142.9072	1645
N.S3N23	38.027	142.5735	1220

N.S3N24	38.0569	142.234	849
N.S3N25	38.0972	141.8957	230
N.S3N26	38.106	141.5572	128
N.S4N01	40.7881	141.7895	139
N.S4N02	40.9069	142.1057	858
N.S4N03	41.0156	142.4314	1425
N.S4N04	41.0762	142.7706	1798
N.S4N05	41.0443	143.1138	1940
N.S4N06	409,718	143.4481	1970
N.S4N07	40.882	143.7746	2613
N.S4N08	40.7805	144.0905	5060
N.S4N09	40.5521	144.1332	5095
N.S4N10	40.4327	143.8887	3897
N.S4N11	40.4353	143.543	2273
N.S4N12	40.4515	143.2015	1711
N.S4N13	40.5196	1,429,617	1537
N.S4N14	40.5927	142.634	1393
N.S4N15	40.5933	142.2844	816
N.S4N16	40.3295	142.2673	559
N.S4N17	40.1165	1,423,926	681
N.S4N18	40.1088	142.6222	969
N.S4N19	40.0904	1,429,695	1256
N.S4N20	40.0743	143.321	1329
N.S4N21	40.0863	143.6572	2456
N.S4N22	40.026	143.9547	4107
N.S4N23	39.7718	1,439,259	4358
N.S4N24	39.6388	143.7154	2936
N.S4N25	39.6976	1,433,749	2228
N.S4N26	39.7245	143.0384	1569
N.S4N27	39.7445	142.6903	914
N.S4N28	39.7385	142.3408	569
N.S5N01	42.7688	145.7115	2052
N.S5N02	42.6403	145.4063	2042
N.S5N03	42.4802	145.1433	1985
N.S5N04	42.2286	145.204	3149
N.S5N05	42.0615	145.437	3813
N.S5N06	41.884	145.6544	5619
N.S5N07	41.6637	145.5291	5953
N.S5N08	41.5301	145.2483	5980
N.S5N09	41.521	144.905	5100
N.S5N10	41.6541	144.6716	4103
N.S5N11	41.9072	144.6955	2093
N.S5N12	42.0784	1,446,375	1772
N.S5N13	41.9792	1,443,445	1607
N.S5N14	41.7475	144.1779	1592

N.S5N15	41.4961	144.0879	1950
N.S5N16	41.3742	143.8006	2380
N.S5N17	41.3643	143.453	2023
N.S5N18	41.4351	143.1264	1509
N.S5N19	41.5607	142.8177	986
N.S5N20	41.6095	142.4787	1165
N.S5N21	41.4248	142.2193	1189
N.S5N22	41.1989	142.0271	1029
N.S5N23	40.954	141.8762	529
N.S6N01	42.8064	146.0211	2427
N.S6N02	42.5807	146.078	2830
N.S6N03	42.0943	146.2316	5710
N.S6N04	41.6653	146.1747	6950
N.S6N05	41.3717	145.6053	6680
N.S6N06	40.8999	1,453,929	6012
N.S6N07	40.536	1,449,381	6160
N.S6N08	40.0319	144.8089	5900
N.S6N09	39.5172	144.7191	6054
N.S6N10	39.0072	144.5915	6160
N.S6N11	38.499	144.4536	6118
N.S6N12	37.9879	144.3357	6111
N.S6N13	37.4862	144.1757	6174
N.S6N14	37.012	143.9557	6228
N.S6N15	36.5748	143.6059	6433
N.S6N16	36.1262	143.2823	6513
N.S6N17	35.6745	1,429,688	6625
N.S6N18	35.2114	142.6799	6319
N.S6N19	34.7118	142.5208	6284
N.S6N20	34.2604	142.2389	7830
N.S6N21	33.9619	141.7291	7797
N.S6N22	33.8601	141.1281	3941
N.S6N23	339,448	140.5189	1723
N.S6N24	34.1773	1,399,814	1276
N.S6N25	34.6696	139.8167	2411

Anexo 18Red submarina de Japón Do-net 1

Código	Latitud (°E)	Longitud (°N)	Profundidad del agua (m)
M.KMA01	33.8048	136.557	2039
M.KMA02	33.7524	136.6488	2011
M.KMA03	33.6484	136.6037	2063
M.KMA04	33.6781	136.4674	2054
M.KMB05	33.4772	1,369,264	1998

M.KMB06	33.3584	1,369,216	2499
M.KMB07	33.3613	136.8072	1980
M.KMB08	33.4664	136.8039	1924
M.KMC09	33.0584	136.8313	3511
M.KMC10	33.0533	1,369,335	4247
M.KMC11	33.0033	136.779	4378
M.KMC12	33.1279	136.8188	3784
M.KMC21	32.9506	136.7417	4449
M.KMD13	33.2201	136.6903	2441
M.KMD14	33.1727	136.577	2350
M.KMD15	33.2331	136.5631	1909
M.KMD16	33.3045	136.5958	1970
M.KME17	33.485	136.4451	2054
M.KME18	33.386	1,363,828	2052
M.KME19	33.4459	136.2564	1909
M.KME20	33.5444	1,363,325	1977
M.KME22	33.3303	136.2702	1841

Anexo 19 *Red submarina de Japón Do-net 2*

Código	Latitud (°E)	Longitud (°N)	Profundidad del agua (m)
M.MRA01	33.4085	134.7449	1375
M.MRA02	33.3393	134.8641	1360
M.MRA03	33.249	134.7691	1352
M.MRA04	33.3205	134.6723	1372
M.MRB05	33.3222	135.0667	1470
M.MRB06	33.2252	135.1698	1388
M.MRB07	33.1755	135.0964	1077
M.MRB08	33.275	1,349,869	1262
M.MRC09	33.228	135.4584	1555
M.MRC10	33.1251	135.5249	1720
M.MRC11	33.0837	135.4121	2001
M.MRC12	33.1752	1,353,414	1317
M.MRD13	33.1594	135.7557	2353
M.MRD14	33.1359	135.8584	2398
M.MRD15	33.142	135.9586	2244
M.MRD16	33.0299	135.8401	2415
M.MRD17	33.0915	135.7144	2700
M.MRE18	329,270	135.7747	3548
M.MRE19	32.892	135.8336	3456
M.MRE20	32.8017	135.7733	3603
M.MRE21	32.8603	135.667	3534
M.MRF22	32.9879	135.225	2104

M.MRF23	32.8827	135.3082	2646
M.MRF24	32.8545	135.1916	2393
M.MRF25	32.8919	135.1538	2278
M.MRG26	32.7615	134.5167	1855
M.MRG27	32.7089	134.5996	2494
M.MRG28	32.6251	134.5164	2499
M.MRG29	32.6752	134.4334	2141

Anexo 20Red submarina de Japón Bahía de Sagami

Código	Latitud (°E)	Longitud (°N)	Profundidad del agua (m)
N.ST1H	34.5956	1,399,183	2197
N.ST2H	34.7396	139.8393	2339
N.ST3H	34.7983	139.6435	902
N.ST4H	34.8931	139.5711	933
N.ST5H	349,413	139.4213	1486
N.ST6H	35.0966	139.3778	1130
VCM1	34.5954	1,399,198	2125
VCM2	34.8111	139.6035	1780
VCM3	35.0712	139.3906	1225